| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  | 
						
							| 2 |  | oddz |  | 
						
							| 3 |  | zaddcl |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | eqeq1 |  | 
						
							| 6 | 5 | rexbidv |  | 
						
							| 7 |  | dfodd6 |  | 
						
							| 8 | 6 7 | elrab2 |  | 
						
							| 9 |  | eqeq1 |  | 
						
							| 10 | 9 | rexbidv |  | 
						
							| 11 |  | dfodd6 |  | 
						
							| 12 | 10 11 | elrab2 |  | 
						
							| 13 |  | zaddcl |  | 
						
							| 14 | 13 | ex |  | 
						
							| 15 | 14 | ad3antlr |  | 
						
							| 16 | 15 | imp |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 17 | peano2zd |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | eqeq2d |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | oveq12 |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 23 | ad3antlr |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 |  | zcn |  | 
						
							| 27 |  | zcn |  | 
						
							| 28 |  | 2cnd |  | 
						
							| 29 | 28 | anim1i |  | 
						
							| 30 | 29 | ancoms |  | 
						
							| 31 |  | mulcl |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | 1cnd |  | 
						
							| 34 |  | 2cnd |  | 
						
							| 35 |  | mulcl |  | 
						
							| 36 | 34 35 | sylan |  | 
						
							| 37 | 32 33 36 33 | add4d |  | 
						
							| 38 |  | 2cnd |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 38 39 40 | adddid |  | 
						
							| 42 | 41 | oveq1d |  | 
						
							| 43 |  | addcl |  | 
						
							| 44 | 38 43 33 | adddid |  | 
						
							| 45 |  | 1p1e2 |  | 
						
							| 46 |  | 2t1e2 |  | 
						
							| 47 | 45 46 | eqtr4i |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 48 | oveq2d |  | 
						
							| 50 | 42 44 49 | 3eqtr4rd |  | 
						
							| 51 | 37 50 | eqtrd |  | 
						
							| 52 | 26 27 51 | syl2an |  | 
						
							| 53 | 52 | ex |  | 
						
							| 54 | 53 | ad3antlr |  | 
						
							| 55 | 54 | imp |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 | 25 56 | eqtrd |  | 
						
							| 58 | 18 21 57 | rspcedvd |  | 
						
							| 59 | 58 | rexlimdva2 |  | 
						
							| 60 | 59 | expimpd |  | 
						
							| 61 | 60 | rexlimdva2 |  | 
						
							| 62 | 61 | imp |  | 
						
							| 63 | 12 62 | biimtrid |  | 
						
							| 64 | 8 63 | sylbi |  | 
						
							| 65 | 64 | imp |  | 
						
							| 66 |  | eqeq1 |  | 
						
							| 67 | 66 | rexbidv |  | 
						
							| 68 |  | dfeven4 |  | 
						
							| 69 | 67 68 | elrab2 |  | 
						
							| 70 | 4 65 69 | sylanbrc |  |