Metamath Proof Explorer


Theorem eqabbOLD

Description: Obsolete version of eqabb as of 12-Feb-2025. (Contributed by NM, 26-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eqabbOLD
|- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( y e. A -> A. x y e. A )
2 hbab1
 |-  ( y e. { x | ph } -> A. x y e. { x | ph } )
3 1 2 cleqh
 |-  ( A = { x | ph } <-> A. x ( x e. A <-> x e. { x | ph } ) )
4 abid
 |-  ( x e. { x | ph } <-> ph )
5 4 bibi2i
 |-  ( ( x e. A <-> x e. { x | ph } ) <-> ( x e. A <-> ph ) )
6 5 albii
 |-  ( A. x ( x e. A <-> x e. { x | ph } ) <-> A. x ( x e. A <-> ph ) )
7 3 6 bitri
 |-  ( A = { x | ph } <-> A. x ( x e. A <-> ph ) )