Metamath Proof Explorer


Theorem eqabbOLD

Description: Obsolete version of eqabb as of 12-Feb-2025. (Contributed by NM, 26-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eqabbOLD ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-5 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
2 hbab1 ( 𝑦 ∈ { 𝑥𝜑 } → ∀ 𝑥 𝑦 ∈ { 𝑥𝜑 } )
3 1 2 cleqh ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) )
4 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
5 4 bibi2i ( ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) ↔ ( 𝑥𝐴𝜑 ) )
6 5 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
7 3 6 bitri ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )