| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 |  |-  (. A e. B ->. A e. B ). | 
						
							| 2 |  | eqsbc1 |  |-  ( A e. B -> ( [. A / x ]. x = C <-> A = C ) ) | 
						
							| 3 | 1 2 | e1a |  |-  (. A e. B ->. ( [. A / x ]. x = C <-> A = C ) ). | 
						
							| 4 |  | eqcom |  |-  ( C = x <-> x = C ) | 
						
							| 5 | 4 | sbcbii |  |-  ( [. A / x ]. C = x <-> [. A / x ]. x = C ) | 
						
							| 6 | 5 | a1i |  |-  ( A e. B -> ( [. A / x ]. C = x <-> [. A / x ]. x = C ) ) | 
						
							| 7 | 1 6 | e1a |  |-  (. A e. B ->. ( [. A / x ]. C = x <-> [. A / x ]. x = C ) ). | 
						
							| 8 |  | idn2 |  |-  (. A e. B ,. [. A / x ]. C = x ->. [. A / x ]. C = x ). | 
						
							| 9 |  | biimp |  |-  ( ( [. A / x ]. C = x <-> [. A / x ]. x = C ) -> ( [. A / x ]. C = x -> [. A / x ]. x = C ) ) | 
						
							| 10 | 7 8 9 | e12 |  |-  (. A e. B ,. [. A / x ]. C = x ->. [. A / x ]. x = C ). | 
						
							| 11 |  | biimp |  |-  ( ( [. A / x ]. x = C <-> A = C ) -> ( [. A / x ]. x = C -> A = C ) ) | 
						
							| 12 | 3 10 11 | e12 |  |-  (. A e. B ,. [. A / x ]. C = x ->. A = C ). | 
						
							| 13 |  | eqcom |  |-  ( A = C <-> C = A ) | 
						
							| 14 | 12 13 | e2bi |  |-  (. A e. B ,. [. A / x ]. C = x ->. C = A ). | 
						
							| 15 | 14 | in2 |  |-  (. A e. B ->. ( [. A / x ]. C = x -> C = A ) ). | 
						
							| 16 |  | idn2 |  |-  (. A e. B ,. C = A ->. C = A ). | 
						
							| 17 | 16 13 | e2bir |  |-  (. A e. B ,. C = A ->. A = C ). | 
						
							| 18 |  | biimpr |  |-  ( ( [. A / x ]. x = C <-> A = C ) -> ( A = C -> [. A / x ]. x = C ) ) | 
						
							| 19 | 3 17 18 | e12 |  |-  (. A e. B ,. C = A ->. [. A / x ]. x = C ). | 
						
							| 20 |  | biimpr |  |-  ( ( [. A / x ]. C = x <-> [. A / x ]. x = C ) -> ( [. A / x ]. x = C -> [. A / x ]. C = x ) ) | 
						
							| 21 | 7 19 20 | e12 |  |-  (. A e. B ,. C = A ->. [. A / x ]. C = x ). | 
						
							| 22 | 21 | in2 |  |-  (. A e. B ->. ( C = A -> [. A / x ]. C = x ) ). | 
						
							| 23 |  | impbi |  |-  ( ( [. A / x ]. C = x -> C = A ) -> ( ( C = A -> [. A / x ]. C = x ) -> ( [. A / x ]. C = x <-> C = A ) ) ) | 
						
							| 24 | 15 22 23 | e11 |  |-  (. A e. B ->. ( [. A / x ]. C = x <-> C = A ) ). | 
						
							| 25 | 24 | in1 |  |-  ( A e. B -> ( [. A / x ]. C = x <-> C = A ) ) |