Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 |
|
eqsbc1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) ) |
3 |
1 2
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) ) |
4 |
|
eqcom |
⊢ ( 𝐶 = 𝑥 ↔ 𝑥 = 𝐶 ) |
5 |
4
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
7 |
1 6
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
8 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) |
9 |
|
biimp |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
10 |
7 8 9
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
11 |
|
biimp |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 → 𝐴 = 𝐶 ) ) |
12 |
3 10 11
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ 𝐴 = 𝐶 ) |
13 |
|
eqcom |
⊢ ( 𝐴 = 𝐶 ↔ 𝐶 = 𝐴 ) |
14 |
12 13
|
e2bi |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ 𝐶 = 𝐴 ) |
15 |
14
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → 𝐶 = 𝐴 ) ) |
16 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐶 = 𝐴 ) |
17 |
16 13
|
e2bir |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐴 = 𝐶 ) |
18 |
|
biimpr |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) → ( 𝐴 = 𝐶 → [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
19 |
3 17 18
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
20 |
|
biimpr |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) ) |
21 |
7 19 20
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) |
22 |
21
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( 𝐶 = 𝐴 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) ) |
23 |
|
impbi |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → 𝐶 = 𝐴 ) → ( ( 𝐶 = 𝐴 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) ) |
24 |
15 22 23
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) |
25 |
24
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) |