| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 2 |
|
eqsbc1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) ) |
| 3 |
1 2
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) ) |
| 4 |
|
eqcom |
⊢ ( 𝐶 = 𝑥 ↔ 𝑥 = 𝐶 ) |
| 5 |
4
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
| 6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
| 7 |
1 6
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
| 8 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) |
| 9 |
|
biimp |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
| 10 |
7 8 9
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
| 11 |
|
biimp |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 → 𝐴 = 𝐶 ) ) |
| 12 |
3 10 11
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ 𝐴 = 𝐶 ) |
| 13 |
|
eqcom |
⊢ ( 𝐴 = 𝐶 ↔ 𝐶 = 𝐴 ) |
| 14 |
12 13
|
e2bi |
⊢ ( 𝐴 ∈ 𝐵 , [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ▶ 𝐶 = 𝐴 ) |
| 15 |
14
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → 𝐶 = 𝐴 ) ) |
| 16 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐶 = 𝐴 ) |
| 17 |
16 13
|
e2bir |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐴 = 𝐶 ) |
| 18 |
|
biimpr |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ↔ 𝐴 = 𝐶 ) → ( 𝐴 = 𝐶 → [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) ) |
| 19 |
3 17 18
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) |
| 20 |
|
biimpr |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐶 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) ) |
| 21 |
7 19 20
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) |
| 22 |
21
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( 𝐶 = 𝐴 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) ) |
| 23 |
|
impbi |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 → 𝐶 = 𝐴 ) → ( ( 𝐶 = 𝐴 → [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ) → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) ) |
| 24 |
15 22 23
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) |
| 25 |
24
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝑥 ↔ 𝐶 = 𝐴 ) ) |