| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    𝐴  ≠  ∅    ▶    𝐴  ≠  ∅    ) | 
						
							| 2 |  | zfregs | ⊢ ( 𝐴  ≠  ∅  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) | 
						
							| 3 | 1 2 | e1a | ⊢ (    𝐴  ≠  ∅    ▶    ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅    ) | 
						
							| 4 |  | incom | ⊢ ( 𝑥  ∩  𝐴 )  =  ( 𝐴  ∩  𝑥 ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( ( 𝑥  ∩  𝐴 )  =  ∅  ↔  ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅  ↔  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 7 | 3 6 | e1bi | ⊢ (    𝐴  ≠  ∅    ▶    ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅    ) | 
						
							| 8 |  | disj1 | ⊢ ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 10 | 7 9 | e1bi | ⊢ (    𝐴  ≠  ∅    ▶    ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝑥 )    ) | 
						
							| 11 |  | alinexa | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝑥 )  ↔  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 12 | 11 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝑦  ∈  𝑥 )  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 13 | 10 12 | e1bi | ⊢ (    𝐴  ≠  ∅    ▶    ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )    ) | 
						
							| 14 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 15 | 13 14 | e1bi | ⊢ (    𝐴  ≠  ∅    ▶    ¬  ∀ 𝑥  ∈  𝐴 ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )    ) | 
						
							| 16 |  | notnotr | ⊢ ( ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  →  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 17 |  | notnot | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  →  ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 18 | 16 17 | impbii | ⊢ ( ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 19 | 18 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 20 | 19 | notbii | ⊢ ( ¬  ∀ 𝑥  ∈  𝐴 ¬  ¬  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 21 | 15 20 | e1bi | ⊢ (    𝐴  ≠  ∅    ▶    ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 )    ) | 
						
							| 22 | 21 | in1 | ⊢ ( 𝐴  ≠  ∅  →  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝑥 ) ) |