Metamath Proof Explorer


Theorem zfregs2VD

Description: Virtual deduction proof of zfregs2 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfregs2VD ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 idn1 (    𝐴 ≠ ∅    ▶    𝐴 ≠ ∅    )
2 zfregs ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ )
3 1 2 e1a (    𝐴 ≠ ∅    ▶   𝑥𝐴 ( 𝑥𝐴 ) = ∅    )
4 incom ( 𝑥𝐴 ) = ( 𝐴𝑥 )
5 4 eqeq1i ( ( 𝑥𝐴 ) = ∅ ↔ ( 𝐴𝑥 ) = ∅ )
6 5 rexbii ( ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ↔ ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ )
7 3 6 e1bi (    𝐴 ≠ ∅    ▶   𝑥𝐴 ( 𝐴𝑥 ) = ∅    )
8 disj1 ( ( 𝐴𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) )
9 8 rexbii ( ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ ↔ ∃ 𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) )
10 7 9 e1bi (    𝐴 ≠ ∅    ▶   𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 )    )
11 alinexa ( ∀ 𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
12 11 rexbii ( ∃ 𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) ↔ ∃ 𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
13 10 12 e1bi (    𝐴 ≠ ∅    ▶   𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 )    )
14 dfrex2 ( ∃ 𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ¬ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
15 13 14 e1bi (    𝐴 ≠ ∅    ▶    ¬ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 )    )
16 notnotr ( ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) → ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
17 notnot ( ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) → ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
18 16 17 impbii ( ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
19 18 ralbii ( ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )
20 19 notbii ( ¬ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )
21 15 20 e1bi (    𝐴 ≠ ∅    ▶    ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 )    )
22 21 in1 ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )