Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) |
2 |
|
zfregs |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
3 |
1 2
|
e1a |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
4 |
|
incom |
⊢ ( 𝑥 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑥 ) |
5 |
4
|
eqeq1i |
⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ( 𝐴 ∩ 𝑥 ) = ∅ ) |
6 |
5
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
7 |
3 6
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
8 |
|
disj1 |
⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
9 |
8
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
10 |
7 9
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
11 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
12 |
11
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
13 |
10 12
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
14 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
15 |
13 14
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
16 |
|
notnotr |
⊢ ( ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
17 |
|
notnot |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
18 |
16 17
|
impbii |
⊢ ( ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
20 |
19
|
notbii |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
21 |
15 20
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
22 |
21
|
in1 |
⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |