| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) |
| 2 |
|
zfregs |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| 3 |
1 2
|
e1a |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| 4 |
|
incom |
⊢ ( 𝑥 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑥 ) |
| 5 |
4
|
eqeq1i |
⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 6 |
5
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 7 |
3 6
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 8 |
|
disj1 |
⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 9 |
8
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 10 |
7 9
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 11 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 12 |
11
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 13 |
10 12
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 14 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 15 |
13 14
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 |
|
notnotr |
⊢ ( ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 17 |
|
notnot |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 18 |
16 17
|
impbii |
⊢ ( ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 19 |
18
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 20 |
19
|
notbii |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 21 |
15 20
|
e1bi |
⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 22 |
21
|
in1 |
⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |