Step |
Hyp |
Ref |
Expression |
1 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
2 |
|
3mix3 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) ) |
3 |
1 2
|
e2 |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) ) |
4 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) } ↔ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) ) |
5 |
3 4
|
e2bir |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) } ) |
6 |
|
dftp2 |
⊢ { 𝐶 , 𝐷 , 𝐴 } = { 𝑥 ∣ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) } |
7 |
6
|
eleq2i |
⊢ ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } ↔ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶 ∨ 𝑥 = 𝐷 ∨ 𝑥 = 𝐴 ) } ) |
8 |
5 7
|
e2bir |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
11 |
1 8 10
|
e22 |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |
12 |
11
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
13 |
12
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
14 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
15 |
13 14
|
e1bi |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
16 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
17 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
18 |
16 17
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∃ 𝑥 𝑥 = 𝐴 ) |
19 |
|
id |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ) |
20 |
15 18 19
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |
21 |
20
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |