Metamath Proof Explorer


Theorem tpid3gVD

Description: Virtual deduction proof of tpid3g . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tpid3gVD ( 𝐴𝐵𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } )

Proof

Step Hyp Ref Expression
1 idn2 (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝑥 = 𝐴    )
2 3mix3 ( 𝑥 = 𝐴 → ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) )
3 1 2 e2 (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 )    )
4 abid ( 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) } ↔ ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) )
5 3 4 e2bir (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) }    )
6 dftp2 { 𝐶 , 𝐷 , 𝐴 } = { 𝑥 ∣ ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) }
7 6 eleq2i ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } ↔ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴 ) } )
8 5 7 e2bir (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 }    )
9 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) )
10 9 biimpd ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝐶 , 𝐷 , 𝐴 } → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) )
11 1 8 10 e22 (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 }    )
12 11 in2 (    𝐴𝐵    ▶    ( 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } )    )
13 12 gen11 (    𝐴𝐵    ▶   𝑥 ( 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } )    )
14 19.23v ( ∀ 𝑥 ( 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) )
15 13 14 e1bi (    𝐴𝐵    ▶    ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } )    )
16 idn1 (    𝐴𝐵    ▶    𝐴𝐵    )
17 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
18 16 17 e1a (    𝐴𝐵    ▶   𝑥 𝑥 = 𝐴    )
19 id ( ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) → ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) )
20 15 18 19 e11 (    𝐴𝐵    ▶    𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 }    )
21 20 in1 ( 𝐴𝐵𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } )