Metamath Proof Explorer


Theorem tpid3gVD

Description: Virtual deduction proof of tpid3g . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tpid3gVD A B A C D A

Proof

Step Hyp Ref Expression
1 idn2 A B , x = A x = A
2 3mix3 x = A x = C x = D x = A
3 1 2 e2 A B , x = A x = C x = D x = A
4 abid x x | x = C x = D x = A x = C x = D x = A
5 3 4 e2bir A B , x = A x x | x = C x = D x = A
6 dftp2 C D A = x | x = C x = D x = A
7 6 eleq2i x C D A x x | x = C x = D x = A
8 5 7 e2bir A B , x = A x C D A
9 eleq1 x = A x C D A A C D A
10 9 biimpd x = A x C D A A C D A
11 1 8 10 e22 A B , x = A A C D A
12 11 in2 A B x = A A C D A
13 12 gen11 A B x x = A A C D A
14 19.23v x x = A A C D A x x = A A C D A
15 13 14 e1bi A B x x = A A C D A
16 idn1 A B A B
17 elisset A B x x = A
18 16 17 e1a A B x x = A
19 id x x = A A C D A x x = A A C D A
20 15 18 19 e11 A B A C D A
21 20 in1 A B A C D A