| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn2 |  |-  (. A e. B ,. x = A ->. x = A ). | 
						
							| 2 |  | 3mix3 |  |-  ( x = A -> ( x = C \/ x = D \/ x = A ) ) | 
						
							| 3 | 1 2 | e2 |  |-  (. A e. B ,. x = A ->. ( x = C \/ x = D \/ x = A ) ). | 
						
							| 4 |  | abid |  |-  ( x e. { x | ( x = C \/ x = D \/ x = A ) } <-> ( x = C \/ x = D \/ x = A ) ) | 
						
							| 5 | 3 4 | e2bir |  |-  (. A e. B ,. x = A ->. x e. { x | ( x = C \/ x = D \/ x = A ) } ). | 
						
							| 6 |  | dftp2 |  |-  { C , D , A } = { x | ( x = C \/ x = D \/ x = A ) } | 
						
							| 7 | 6 | eleq2i |  |-  ( x e. { C , D , A } <-> x e. { x | ( x = C \/ x = D \/ x = A ) } ) | 
						
							| 8 | 5 7 | e2bir |  |-  (. A e. B ,. x = A ->. x e. { C , D , A } ). | 
						
							| 9 |  | eleq1 |  |-  ( x = A -> ( x e. { C , D , A } <-> A e. { C , D , A } ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( x = A -> ( x e. { C , D , A } -> A e. { C , D , A } ) ) | 
						
							| 11 | 1 8 10 | e22 |  |-  (. A e. B ,. x = A ->. A e. { C , D , A } ). | 
						
							| 12 | 11 | in2 |  |-  (. A e. B ->. ( x = A -> A e. { C , D , A } ) ). | 
						
							| 13 | 12 | gen11 |  |-  (. A e. B ->. A. x ( x = A -> A e. { C , D , A } ) ). | 
						
							| 14 |  | 19.23v |  |-  ( A. x ( x = A -> A e. { C , D , A } ) <-> ( E. x x = A -> A e. { C , D , A } ) ) | 
						
							| 15 | 13 14 | e1bi |  |-  (. A e. B ->. ( E. x x = A -> A e. { C , D , A } ) ). | 
						
							| 16 |  | idn1 |  |-  (. A e. B ->. A e. B ). | 
						
							| 17 |  | elisset |  |-  ( A e. B -> E. x x = A ) | 
						
							| 18 | 16 17 | e1a |  |-  (. A e. B ->. E. x x = A ). | 
						
							| 19 |  | id |  |-  ( ( E. x x = A -> A e. { C , D , A } ) -> ( E. x x = A -> A e. { C , D , A } ) ) | 
						
							| 20 | 15 18 19 | e11 |  |-  (. A e. B ->. A e. { C , D , A } ). | 
						
							| 21 | 20 | in1 |  |-  ( A e. B -> A e. { C , D , A } ) |