Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreltrrel | |- ( EqvRel R -> TrRel R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrel | |- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
|
2 | 1 | simp3bi | |- ( EqvRel R -> TrRel R ) |