Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreltrrel | ⊢ ( EqvRel 𝑅 → TrRel 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ) | |
| 2 | 1 | simp3bi | ⊢ ( EqvRel 𝑅 → TrRel 𝑅 ) |