| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erdsze2.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | erdsze2.s |  |-  ( ph -> S e. NN ) | 
						
							| 3 |  | erdsze2.f |  |-  ( ph -> F : A -1-1-> RR ) | 
						
							| 4 |  | erdsze2.a |  |-  ( ph -> A C_ RR ) | 
						
							| 5 |  | erdsze2.l |  |-  ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) < ( # ` A ) ) | 
						
							| 6 |  | eqid |  |-  ( ( R - 1 ) x. ( S - 1 ) ) = ( ( R - 1 ) x. ( S - 1 ) ) | 
						
							| 7 | 1 2 3 4 6 5 | erdsze2lem1 |  |-  ( ph -> E. f ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> R e. NN ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> S e. NN ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> F : A -1-1-> RR ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> A C_ RR ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> ( ( R - 1 ) x. ( S - 1 ) ) < ( # ` A ) ) | 
						
							| 13 |  | simprl |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A ) | 
						
							| 14 |  | simprr |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) | 
						
							| 15 | 8 9 10 11 6 12 13 14 | erdsze2lem2 |  |-  ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) | 
						
							| 16 | 7 15 | exlimddv |  |-  ( ph -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |