| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze2.r |
|- ( ph -> R e. NN ) |
| 2 |
|
erdsze2.s |
|- ( ph -> S e. NN ) |
| 3 |
|
erdsze2.f |
|- ( ph -> F : A -1-1-> RR ) |
| 4 |
|
erdsze2.a |
|- ( ph -> A C_ RR ) |
| 5 |
|
erdsze2lem.n |
|- N = ( ( R - 1 ) x. ( S - 1 ) ) |
| 6 |
|
erdsze2lem.l |
|- ( ph -> N < ( # ` A ) ) |
| 7 |
|
nnm1nn0 |
|- ( R e. NN -> ( R - 1 ) e. NN0 ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( R - 1 ) e. NN0 ) |
| 9 |
|
nnm1nn0 |
|- ( S e. NN -> ( S - 1 ) e. NN0 ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( S - 1 ) e. NN0 ) |
| 11 |
8 10
|
nn0mulcld |
|- ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) e. NN0 ) |
| 12 |
5 11
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
| 13 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 14 |
|
hashfz1 |
|- ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 15 |
12 13 14
|
3syl |
|- ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ A e. Fin ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ A e. Fin ) -> N < ( # ` A ) ) |
| 18 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 19 |
|
nn0ltp1le |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) <_ ( # ` A ) ) ) |
| 20 |
12 18 19
|
syl2an |
|- ( ( ph /\ A e. Fin ) -> ( N < ( # ` A ) <-> ( N + 1 ) <_ ( # ` A ) ) ) |
| 21 |
17 20
|
mpbid |
|- ( ( ph /\ A e. Fin ) -> ( N + 1 ) <_ ( # ` A ) ) |
| 22 |
16 21
|
eqbrtrd |
|- ( ( ph /\ A e. Fin ) -> ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) ) |
| 23 |
|
fzfid |
|- ( ( ph /\ A e. Fin ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 24 |
|
simpr |
|- ( ( ph /\ A e. Fin ) -> A e. Fin ) |
| 25 |
|
hashdom |
|- ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ A e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) <-> ( 1 ... ( N + 1 ) ) ~<_ A ) ) |
| 26 |
23 24 25
|
syl2anc |
|- ( ( ph /\ A e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) <-> ( 1 ... ( N + 1 ) ) ~<_ A ) ) |
| 27 |
22 26
|
mpbid |
|- ( ( ph /\ A e. Fin ) -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
| 28 |
|
simpr |
|- ( ( ph /\ -. A e. Fin ) -> -. A e. Fin ) |
| 29 |
|
fzfid |
|- ( ( ph /\ -. A e. Fin ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 30 |
|
isinffi |
|- ( ( -. A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
| 31 |
28 29 30
|
syl2anc |
|- ( ( ph /\ -. A e. Fin ) -> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
| 32 |
|
reex |
|- RR e. _V |
| 33 |
|
ssexg |
|- ( ( A C_ RR /\ RR e. _V ) -> A e. _V ) |
| 34 |
4 32 33
|
sylancl |
|- ( ph -> A e. _V ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ -. A e. Fin ) -> A e. _V ) |
| 36 |
|
brdomg |
|- ( A e. _V -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) ) |
| 37 |
35 36
|
syl |
|- ( ( ph /\ -. A e. Fin ) -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) ) |
| 38 |
31 37
|
mpbird |
|- ( ( ph /\ -. A e. Fin ) -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
| 39 |
27 38
|
pm2.61dan |
|- ( ph -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
| 40 |
|
domeng |
|- ( A e. _V -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) ) |
| 41 |
34 40
|
syl |
|- ( ph -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) ) |
| 42 |
39 41
|
mpbid |
|- ( ph -> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) |
| 43 |
|
simprr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s C_ A ) |
| 44 |
4
|
adantr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> A C_ RR ) |
| 45 |
43 44
|
sstrd |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s C_ RR ) |
| 46 |
|
ltso |
|- < Or RR |
| 47 |
|
soss |
|- ( s C_ RR -> ( < Or RR -> < Or s ) ) |
| 48 |
45 46 47
|
mpisyl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> < Or s ) |
| 49 |
|
fzfid |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 50 |
|
simprl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( 1 ... ( N + 1 ) ) ~~ s ) |
| 51 |
|
enfi |
|- ( ( 1 ... ( N + 1 ) ) ~~ s -> ( ( 1 ... ( N + 1 ) ) e. Fin <-> s e. Fin ) ) |
| 52 |
50 51
|
syl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( ( 1 ... ( N + 1 ) ) e. Fin <-> s e. Fin ) ) |
| 53 |
49 52
|
mpbid |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s e. Fin ) |
| 54 |
|
fz1iso |
|- ( ( < Or s /\ s e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
| 55 |
48 53 54
|
syl2anc |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
| 56 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> f : ( 1 ... ( # ` s ) ) -1-1-onto-> s ) |
| 57 |
56
|
adantl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( # ` s ) ) -1-1-onto-> s ) |
| 58 |
|
hashen |
|- ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ s e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) <-> ( 1 ... ( N + 1 ) ) ~~ s ) ) |
| 59 |
49 53 58
|
syl2anc |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) <-> ( 1 ... ( N + 1 ) ) ~~ s ) ) |
| 60 |
50 59
|
mpbird |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) ) |
| 61 |
15
|
adantr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 62 |
60 61
|
eqtr3d |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` s ) = ( N + 1 ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( # ` s ) = ( N + 1 ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( 1 ... ( # ` s ) ) = ( 1 ... ( N + 1 ) ) ) |
| 65 |
64
|
f1oeq2d |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f : ( 1 ... ( # ` s ) ) -1-1-onto-> s <-> f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s ) ) |
| 66 |
57 65
|
mpbid |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s ) |
| 67 |
|
f1of1 |
|- ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s -> f : ( 1 ... ( N + 1 ) ) -1-1-> s ) |
| 68 |
66 67
|
syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> s ) |
| 69 |
|
simplrr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> s C_ A ) |
| 70 |
|
f1ss |
|- ( ( f : ( 1 ... ( N + 1 ) ) -1-1-> s /\ s C_ A ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
| 71 |
68 69 70
|
syl2anc |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
| 72 |
|
simpr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
| 73 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` s ) ) -1-1-onto-> s -> f : ( 1 ... ( # ` s ) ) -onto-> s ) |
| 74 |
|
forn |
|- ( f : ( 1 ... ( # ` s ) ) -onto-> s -> ran f = s ) |
| 75 |
|
isoeq5 |
|- ( ran f = s -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) ) |
| 76 |
57 73 74 75
|
4syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) ) |
| 77 |
72 76
|
mpbird |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) ) |
| 78 |
|
isoeq4 |
|- ( ( 1 ... ( # ` s ) ) = ( 1 ... ( N + 1 ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
| 79 |
64 78
|
syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
| 80 |
77 79
|
mpbid |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) |
| 81 |
71 80
|
jca |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
| 82 |
81
|
ex |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) ) |
| 83 |
82
|
eximdv |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) ) |
| 84 |
55 83
|
mpd |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
| 85 |
42 84
|
exlimddv |
|- ( ph -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |