Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze2.r |
|- ( ph -> R e. NN ) |
2 |
|
erdsze2.s |
|- ( ph -> S e. NN ) |
3 |
|
erdsze2.f |
|- ( ph -> F : A -1-1-> RR ) |
4 |
|
erdsze2.a |
|- ( ph -> A C_ RR ) |
5 |
|
erdsze2lem.n |
|- N = ( ( R - 1 ) x. ( S - 1 ) ) |
6 |
|
erdsze2lem.l |
|- ( ph -> N < ( # ` A ) ) |
7 |
|
nnm1nn0 |
|- ( R e. NN -> ( R - 1 ) e. NN0 ) |
8 |
1 7
|
syl |
|- ( ph -> ( R - 1 ) e. NN0 ) |
9 |
|
nnm1nn0 |
|- ( S e. NN -> ( S - 1 ) e. NN0 ) |
10 |
2 9
|
syl |
|- ( ph -> ( S - 1 ) e. NN0 ) |
11 |
8 10
|
nn0mulcld |
|- ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) e. NN0 ) |
12 |
5 11
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
13 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
14 |
|
hashfz1 |
|- ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
15 |
12 13 14
|
3syl |
|- ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ A e. Fin ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
17 |
6
|
adantr |
|- ( ( ph /\ A e. Fin ) -> N < ( # ` A ) ) |
18 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
19 |
|
nn0ltp1le |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) <_ ( # ` A ) ) ) |
20 |
12 18 19
|
syl2an |
|- ( ( ph /\ A e. Fin ) -> ( N < ( # ` A ) <-> ( N + 1 ) <_ ( # ` A ) ) ) |
21 |
17 20
|
mpbid |
|- ( ( ph /\ A e. Fin ) -> ( N + 1 ) <_ ( # ` A ) ) |
22 |
16 21
|
eqbrtrd |
|- ( ( ph /\ A e. Fin ) -> ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) ) |
23 |
|
fzfid |
|- ( ( ph /\ A e. Fin ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
24 |
|
simpr |
|- ( ( ph /\ A e. Fin ) -> A e. Fin ) |
25 |
|
hashdom |
|- ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ A e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) <-> ( 1 ... ( N + 1 ) ) ~<_ A ) ) |
26 |
23 24 25
|
syl2anc |
|- ( ( ph /\ A e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) <_ ( # ` A ) <-> ( 1 ... ( N + 1 ) ) ~<_ A ) ) |
27 |
22 26
|
mpbid |
|- ( ( ph /\ A e. Fin ) -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
28 |
|
simpr |
|- ( ( ph /\ -. A e. Fin ) -> -. A e. Fin ) |
29 |
|
fzfid |
|- ( ( ph /\ -. A e. Fin ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
30 |
|
isinffi |
|- ( ( -. A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
31 |
28 29 30
|
syl2anc |
|- ( ( ph /\ -. A e. Fin ) -> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
32 |
|
reex |
|- RR e. _V |
33 |
|
ssexg |
|- ( ( A C_ RR /\ RR e. _V ) -> A e. _V ) |
34 |
4 32 33
|
sylancl |
|- ( ph -> A e. _V ) |
35 |
34
|
adantr |
|- ( ( ph /\ -. A e. Fin ) -> A e. _V ) |
36 |
|
brdomg |
|- ( A e. _V -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) ) |
37 |
35 36
|
syl |
|- ( ( ph /\ -. A e. Fin ) -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. f f : ( 1 ... ( N + 1 ) ) -1-1-> A ) ) |
38 |
31 37
|
mpbird |
|- ( ( ph /\ -. A e. Fin ) -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
39 |
27 38
|
pm2.61dan |
|- ( ph -> ( 1 ... ( N + 1 ) ) ~<_ A ) |
40 |
|
domeng |
|- ( A e. _V -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) ) |
41 |
34 40
|
syl |
|- ( ph -> ( ( 1 ... ( N + 1 ) ) ~<_ A <-> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) ) |
42 |
39 41
|
mpbid |
|- ( ph -> E. s ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) |
43 |
|
simprr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s C_ A ) |
44 |
4
|
adantr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> A C_ RR ) |
45 |
43 44
|
sstrd |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s C_ RR ) |
46 |
|
ltso |
|- < Or RR |
47 |
|
soss |
|- ( s C_ RR -> ( < Or RR -> < Or s ) ) |
48 |
45 46 47
|
mpisyl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> < Or s ) |
49 |
|
fzfid |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
50 |
|
simprl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( 1 ... ( N + 1 ) ) ~~ s ) |
51 |
|
enfi |
|- ( ( 1 ... ( N + 1 ) ) ~~ s -> ( ( 1 ... ( N + 1 ) ) e. Fin <-> s e. Fin ) ) |
52 |
50 51
|
syl |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( ( 1 ... ( N + 1 ) ) e. Fin <-> s e. Fin ) ) |
53 |
49 52
|
mpbid |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> s e. Fin ) |
54 |
|
fz1iso |
|- ( ( < Or s /\ s e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
55 |
48 53 54
|
syl2anc |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
56 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> f : ( 1 ... ( # ` s ) ) -1-1-onto-> s ) |
57 |
56
|
adantl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( # ` s ) ) -1-1-onto-> s ) |
58 |
|
hashen |
|- ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ s e. Fin ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) <-> ( 1 ... ( N + 1 ) ) ~~ s ) ) |
59 |
49 53 58
|
syl2anc |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) <-> ( 1 ... ( N + 1 ) ) ~~ s ) ) |
60 |
50 59
|
mpbird |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( # ` s ) ) |
61 |
15
|
adantr |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
62 |
60 61
|
eqtr3d |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( # ` s ) = ( N + 1 ) ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( # ` s ) = ( N + 1 ) ) |
64 |
63
|
oveq2d |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( 1 ... ( # ` s ) ) = ( 1 ... ( N + 1 ) ) ) |
65 |
64
|
f1oeq2d |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f : ( 1 ... ( # ` s ) ) -1-1-onto-> s <-> f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s ) ) |
66 |
57 65
|
mpbid |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s ) |
67 |
|
f1of1 |
|- ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> s -> f : ( 1 ... ( N + 1 ) ) -1-1-> s ) |
68 |
66 67
|
syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> s ) |
69 |
|
simplrr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> s C_ A ) |
70 |
|
f1ss |
|- ( ( f : ( 1 ... ( N + 1 ) ) -1-1-> s /\ s C_ A ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
71 |
68 69 70
|
syl2anc |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
72 |
|
simpr |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) |
73 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` s ) ) -1-1-onto-> s -> f : ( 1 ... ( # ` s ) ) -onto-> s ) |
74 |
|
forn |
|- ( f : ( 1 ... ( # ` s ) ) -onto-> s -> ran f = s ) |
75 |
|
isoeq5 |
|- ( ran f = s -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) ) |
76 |
57 73 74 75
|
4syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) ) |
77 |
72 76
|
mpbird |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) ) |
78 |
|
isoeq4 |
|- ( ( 1 ... ( # ` s ) ) = ( 1 ... ( N + 1 ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
79 |
64 78
|
syl |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , ran f ) <-> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
80 |
77 79
|
mpbid |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) |
81 |
71 80
|
jca |
|- ( ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) /\ f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) ) -> ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
82 |
81
|
ex |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) ) |
83 |
82
|
eximdv |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` s ) ) , s ) -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) ) |
84 |
55 83
|
mpd |
|- ( ( ph /\ ( ( 1 ... ( N + 1 ) ) ~~ s /\ s C_ A ) ) -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |
85 |
42 84
|
exlimddv |
|- ( ph -> E. f ( f : ( 1 ... ( N + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( N + 1 ) ) , ran f ) ) ) |