| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erdsze2.r |  |-  ( ph -> R e. NN ) | 
						
							| 2 |  | erdsze2.s |  |-  ( ph -> S e. NN ) | 
						
							| 3 |  | erdsze2.f |  |-  ( ph -> F : A -1-1-> RR ) | 
						
							| 4 |  | erdsze2.a |  |-  ( ph -> A C_ RR ) | 
						
							| 5 |  | erdsze2lem.n |  |-  N = ( ( R - 1 ) x. ( S - 1 ) ) | 
						
							| 6 |  | erdsze2lem.l |  |-  ( ph -> N < ( # ` A ) ) | 
						
							| 7 |  | erdsze2lem.g |  |-  ( ph -> G : ( 1 ... ( N + 1 ) ) -1-1-> A ) | 
						
							| 8 |  | erdsze2lem.i |  |-  ( ph -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) ) | 
						
							| 9 |  | nnm1nn0 |  |-  ( R e. NN -> ( R - 1 ) e. NN0 ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> ( R - 1 ) e. NN0 ) | 
						
							| 11 |  | nnm1nn0 |  |-  ( S e. NN -> ( S - 1 ) e. NN0 ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> ( S - 1 ) e. NN0 ) | 
						
							| 13 | 10 12 | nn0mulcld |  |-  ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) e. NN0 ) | 
						
							| 14 | 5 13 | eqeltrid |  |-  ( ph -> N e. NN0 ) | 
						
							| 15 |  | nn0p1nn |  |-  ( N e. NN0 -> ( N + 1 ) e. NN ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( N + 1 ) e. NN ) | 
						
							| 17 |  | f1co |  |-  ( ( F : A -1-1-> RR /\ G : ( 1 ... ( N + 1 ) ) -1-1-> A ) -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR ) | 
						
							| 18 | 3 7 17 | syl2anc |  |-  ( ph -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR ) | 
						
							| 19 | 14 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 20 | 19 | ltp1d |  |-  ( ph -> N < ( N + 1 ) ) | 
						
							| 21 | 5 20 | eqbrtrrid |  |-  ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) < ( N + 1 ) ) | 
						
							| 22 | 16 18 1 2 21 | erdsze |  |-  ( ph -> E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) ) | 
						
							| 23 |  | velpw |  |-  ( t e. ~P ( 1 ... ( N + 1 ) ) <-> t C_ ( 1 ... ( N + 1 ) ) ) | 
						
							| 24 |  | imassrn |  |-  ( G " t ) C_ ran G | 
						
							| 25 |  | f1f |  |-  ( G : ( 1 ... ( N + 1 ) ) -1-1-> A -> G : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 26 | 7 25 | syl |  |-  ( ph -> G : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 27 | 26 | frnd |  |-  ( ph -> ran G C_ A ) | 
						
							| 28 | 24 27 | sstrid |  |-  ( ph -> ( G " t ) C_ A ) | 
						
							| 29 |  | reex |  |-  RR e. _V | 
						
							| 30 |  | ssexg |  |-  ( ( A C_ RR /\ RR e. _V ) -> A e. _V ) | 
						
							| 31 | 4 29 30 | sylancl |  |-  ( ph -> A e. _V ) | 
						
							| 32 |  | elpw2g |  |-  ( A e. _V -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) ) | 
						
							| 34 | 28 33 | mpbird |  |-  ( ph -> ( G " t ) e. ~P A ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. ~P A ) | 
						
							| 36 |  | vex |  |-  t e. _V | 
						
							| 37 | 36 | f1imaen |  |-  ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t ) | 
						
							| 38 | 7 37 | sylan |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t ) | 
						
							| 39 |  | fzfid |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) e. Fin ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t C_ ( 1 ... ( N + 1 ) ) ) | 
						
							| 41 |  | ssfi |  |-  ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin ) | 
						
							| 42 | 39 40 41 | syl2anc |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin ) | 
						
							| 43 |  | enfii |  |-  ( ( t e. Fin /\ ( G " t ) ~~ t ) -> ( G " t ) e. Fin ) | 
						
							| 44 | 42 38 43 | syl2anc |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. Fin ) | 
						
							| 45 |  | hashen |  |-  ( ( ( G " t ) e. Fin /\ t e. Fin ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) ) | 
						
							| 46 | 44 42 45 | syl2anc |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) ) | 
						
							| 47 | 38 46 | mpbird |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( # ` ( G " t ) ) = ( # ` t ) ) | 
						
							| 48 | 47 | breq2d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` ( G " t ) ) <-> R <_ ( # ` t ) ) ) | 
						
							| 49 | 48 | biimprd |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` t ) -> R <_ ( # ` ( G " t ) ) ) ) | 
						
							| 50 | 8 | ad2antrr |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) ) | 
						
							| 51 | 40 | adantr |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> t C_ ( 1 ... ( N + 1 ) ) ) | 
						
							| 52 |  | simprl |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. t ) | 
						
							| 53 | 51 52 | sseldd |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 54 |  | simprr |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. t ) | 
						
							| 55 | 51 54 | sseldd |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 56 |  | isorel |  |-  ( ( G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) /\ ( x e. ( 1 ... ( N + 1 ) ) /\ y e. ( 1 ... ( N + 1 ) ) ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) ) | 
						
							| 57 | 50 53 55 56 | syl12anc |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) ) | 
						
							| 58 | 57 | biimpd |  |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y -> ( G ` x ) < ( G ` y ) ) ) | 
						
							| 59 | 58 | ralrimivva |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) | 
						
							| 60 |  | elfznn |  |-  ( t e. ( 1 ... ( N + 1 ) ) -> t e. NN ) | 
						
							| 61 | 60 | nnred |  |-  ( t e. ( 1 ... ( N + 1 ) ) -> t e. RR ) | 
						
							| 62 | 61 | ssriv |  |-  ( 1 ... ( N + 1 ) ) C_ RR | 
						
							| 63 | 62 | a1i |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) C_ RR ) | 
						
							| 64 |  | ltso |  |-  < Or RR | 
						
							| 65 |  | soss |  |-  ( ( 1 ... ( N + 1 ) ) C_ RR -> ( < Or RR -> < Or ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 66 | 63 64 65 | mpisyl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or ( 1 ... ( N + 1 ) ) ) | 
						
							| 67 | 4 | adantr |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A C_ RR ) | 
						
							| 68 |  | soss |  |-  ( A C_ RR -> ( < Or RR -> < Or A ) ) | 
						
							| 69 | 67 64 68 | mpisyl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or A ) | 
						
							| 70 | 26 | adantr |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 71 |  | soisores |  |-  ( ( ( < Or ( 1 ... ( N + 1 ) ) /\ < Or A ) /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ t C_ ( 1 ... ( N + 1 ) ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) ) | 
						
							| 72 | 66 69 70 40 71 | syl22anc |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) ) | 
						
							| 73 | 59 72 | mpbird |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) Isom < , < ( t , ( G " t ) ) ) | 
						
							| 74 |  | isocnv |  |-  ( ( G |` t ) Isom < , < ( t , ( G " t ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) ) | 
						
							| 76 |  | isotr |  |-  ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) | 
						
							| 77 | 76 | ex |  |-  ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 78 | 75 77 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 79 |  | resco |  |-  ( ( F o. G ) |` t ) = ( F o. ( G |` t ) ) | 
						
							| 80 | 79 | coeq1i |  |-  ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( ( F o. ( G |` t ) ) o. `' ( G |` t ) ) | 
						
							| 81 |  | coass |  |-  ( ( F o. ( G |` t ) ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) | 
						
							| 82 | 80 81 | eqtri |  |-  ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) | 
						
							| 83 |  | f1ores |  |-  ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) ) | 
						
							| 84 | 7 83 | sylan |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) ) | 
						
							| 85 |  | f1ococnv2 |  |-  ( ( G |` t ) : t -1-1-onto-> ( G " t ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) ) | 
						
							| 86 | 84 85 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) ) | 
						
							| 87 | 86 | coeq2d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F o. ( _I |` ( G " t ) ) ) ) | 
						
							| 88 |  | coires1 |  |-  ( F o. ( _I |` ( G " t ) ) ) = ( F |` ( G " t ) ) | 
						
							| 89 | 87 88 | eqtrdi |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F |` ( G " t ) ) ) | 
						
							| 90 | 82 89 | eqtrid |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) ) | 
						
							| 91 |  | isoeq1 |  |-  ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 93 |  | imaco |  |-  ( ( F o. G ) " t ) = ( F " ( G " t ) ) | 
						
							| 94 |  | isoeq5 |  |-  ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 95 | 93 94 | ax-mp |  |-  ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) | 
						
							| 96 | 92 95 | bitrdi |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 97 | 78 96 | sylibd |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 98 | 49 97 | anim12d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) | 
						
							| 99 | 47 | breq2d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` ( G " t ) ) <-> S <_ ( # ` t ) ) ) | 
						
							| 100 | 99 | biimprd |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` t ) -> S <_ ( # ` ( G " t ) ) ) ) | 
						
							| 101 |  | isotr |  |-  ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) | 
						
							| 102 | 101 | ex |  |-  ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 103 | 75 102 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 104 |  | isoeq1 |  |-  ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 105 | 90 104 | syl |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) | 
						
							| 106 |  | isoeq5 |  |-  ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 107 | 93 106 | ax-mp |  |-  ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) | 
						
							| 108 | 105 107 | bitrdi |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 109 | 103 108 | sylibd |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 110 | 100 109 | anim12d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) | 
						
							| 111 | 98 110 | orim12d |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) ) | 
						
							| 112 |  | fveq2 |  |-  ( s = ( G " t ) -> ( # ` s ) = ( # ` ( G " t ) ) ) | 
						
							| 113 | 112 | breq2d |  |-  ( s = ( G " t ) -> ( R <_ ( # ` s ) <-> R <_ ( # ` ( G " t ) ) ) ) | 
						
							| 114 |  | reseq2 |  |-  ( s = ( G " t ) -> ( F |` s ) = ( F |` ( G " t ) ) ) | 
						
							| 115 |  | isoeq1 |  |-  ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) ) | 
						
							| 116 | 114 115 | syl |  |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) ) | 
						
							| 117 |  | isoeq4 |  |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) ) ) | 
						
							| 118 |  | imaeq2 |  |-  ( s = ( G " t ) -> ( F " s ) = ( F " ( G " t ) ) ) | 
						
							| 119 |  | isoeq5 |  |-  ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 120 | 118 119 | syl |  |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 121 | 116 117 120 | 3bitrd |  |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 122 | 113 121 | anbi12d |  |-  ( s = ( G " t ) -> ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) <-> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) | 
						
							| 123 | 112 | breq2d |  |-  ( s = ( G " t ) -> ( S <_ ( # ` s ) <-> S <_ ( # ` ( G " t ) ) ) ) | 
						
							| 124 |  | isoeq1 |  |-  ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) ) | 
						
							| 125 | 114 124 | syl |  |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) ) | 
						
							| 126 |  | isoeq4 |  |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) ) ) | 
						
							| 127 |  | isoeq5 |  |-  ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 128 | 118 127 | syl |  |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 129 | 125 126 128 | 3bitrd |  |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) | 
						
							| 130 | 123 129 | anbi12d |  |-  ( s = ( G " t ) -> ( ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) <-> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) | 
						
							| 131 | 122 130 | orbi12d |  |-  ( s = ( G " t ) -> ( ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) <-> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) ) | 
						
							| 132 | 131 | rspcev |  |-  ( ( ( G " t ) e. ~P A /\ ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) | 
						
							| 133 | 35 111 132 | syl6an |  |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) | 
						
							| 134 | 23 133 | sylan2b |  |-  ( ( ph /\ t e. ~P ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) | 
						
							| 135 | 134 | rexlimdva |  |-  ( ph -> ( E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) | 
						
							| 136 | 22 135 | mpd |  |-  ( ph -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |