| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze2.r |
|- ( ph -> R e. NN ) |
| 2 |
|
erdsze2.s |
|- ( ph -> S e. NN ) |
| 3 |
|
erdsze2.f |
|- ( ph -> F : A -1-1-> RR ) |
| 4 |
|
erdsze2.a |
|- ( ph -> A C_ RR ) |
| 5 |
|
erdsze2lem.n |
|- N = ( ( R - 1 ) x. ( S - 1 ) ) |
| 6 |
|
erdsze2lem.l |
|- ( ph -> N < ( # ` A ) ) |
| 7 |
|
erdsze2lem.g |
|- ( ph -> G : ( 1 ... ( N + 1 ) ) -1-1-> A ) |
| 8 |
|
erdsze2lem.i |
|- ( ph -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) ) |
| 9 |
|
nnm1nn0 |
|- ( R e. NN -> ( R - 1 ) e. NN0 ) |
| 10 |
1 9
|
syl |
|- ( ph -> ( R - 1 ) e. NN0 ) |
| 11 |
|
nnm1nn0 |
|- ( S e. NN -> ( S - 1 ) e. NN0 ) |
| 12 |
2 11
|
syl |
|- ( ph -> ( S - 1 ) e. NN0 ) |
| 13 |
10 12
|
nn0mulcld |
|- ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) e. NN0 ) |
| 14 |
5 13
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
| 15 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( N + 1 ) e. NN ) |
| 17 |
|
f1co |
|- ( ( F : A -1-1-> RR /\ G : ( 1 ... ( N + 1 ) ) -1-1-> A ) -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR ) |
| 18 |
3 7 17
|
syl2anc |
|- ( ph -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR ) |
| 19 |
14
|
nn0red |
|- ( ph -> N e. RR ) |
| 20 |
19
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
| 21 |
5 20
|
eqbrtrrid |
|- ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) < ( N + 1 ) ) |
| 22 |
16 18 1 2 21
|
erdsze |
|- ( ph -> E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) ) |
| 23 |
|
velpw |
|- ( t e. ~P ( 1 ... ( N + 1 ) ) <-> t C_ ( 1 ... ( N + 1 ) ) ) |
| 24 |
|
imassrn |
|- ( G " t ) C_ ran G |
| 25 |
|
f1f |
|- ( G : ( 1 ... ( N + 1 ) ) -1-1-> A -> G : ( 1 ... ( N + 1 ) ) --> A ) |
| 26 |
7 25
|
syl |
|- ( ph -> G : ( 1 ... ( N + 1 ) ) --> A ) |
| 27 |
26
|
frnd |
|- ( ph -> ran G C_ A ) |
| 28 |
24 27
|
sstrid |
|- ( ph -> ( G " t ) C_ A ) |
| 29 |
|
reex |
|- RR e. _V |
| 30 |
|
ssexg |
|- ( ( A C_ RR /\ RR e. _V ) -> A e. _V ) |
| 31 |
4 29 30
|
sylancl |
|- ( ph -> A e. _V ) |
| 32 |
|
elpw2g |
|- ( A e. _V -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) ) |
| 33 |
31 32
|
syl |
|- ( ph -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) ) |
| 34 |
28 33
|
mpbird |
|- ( ph -> ( G " t ) e. ~P A ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. ~P A ) |
| 36 |
|
vex |
|- t e. _V |
| 37 |
36
|
f1imaen |
|- ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t ) |
| 38 |
7 37
|
sylan |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t ) |
| 39 |
|
fzfid |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 40 |
|
simpr |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t C_ ( 1 ... ( N + 1 ) ) ) |
| 41 |
|
ssfi |
|- ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin ) |
| 42 |
39 40 41
|
syl2anc |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin ) |
| 43 |
|
enfii |
|- ( ( t e. Fin /\ ( G " t ) ~~ t ) -> ( G " t ) e. Fin ) |
| 44 |
42 38 43
|
syl2anc |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. Fin ) |
| 45 |
|
hashen |
|- ( ( ( G " t ) e. Fin /\ t e. Fin ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) ) |
| 46 |
44 42 45
|
syl2anc |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) ) |
| 47 |
38 46
|
mpbird |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( # ` ( G " t ) ) = ( # ` t ) ) |
| 48 |
47
|
breq2d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` ( G " t ) ) <-> R <_ ( # ` t ) ) ) |
| 49 |
48
|
biimprd |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` t ) -> R <_ ( # ` ( G " t ) ) ) ) |
| 50 |
8
|
ad2antrr |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) ) |
| 51 |
40
|
adantr |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> t C_ ( 1 ... ( N + 1 ) ) ) |
| 52 |
|
simprl |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. t ) |
| 53 |
51 52
|
sseldd |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. ( 1 ... ( N + 1 ) ) ) |
| 54 |
|
simprr |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. t ) |
| 55 |
51 54
|
sseldd |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. ( 1 ... ( N + 1 ) ) ) |
| 56 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) /\ ( x e. ( 1 ... ( N + 1 ) ) /\ y e. ( 1 ... ( N + 1 ) ) ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) ) |
| 57 |
50 53 55 56
|
syl12anc |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) ) |
| 58 |
57
|
biimpd |
|- ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y -> ( G ` x ) < ( G ` y ) ) ) |
| 59 |
58
|
ralrimivva |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) |
| 60 |
|
elfznn |
|- ( t e. ( 1 ... ( N + 1 ) ) -> t e. NN ) |
| 61 |
60
|
nnred |
|- ( t e. ( 1 ... ( N + 1 ) ) -> t e. RR ) |
| 62 |
61
|
ssriv |
|- ( 1 ... ( N + 1 ) ) C_ RR |
| 63 |
62
|
a1i |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) C_ RR ) |
| 64 |
|
ltso |
|- < Or RR |
| 65 |
|
soss |
|- ( ( 1 ... ( N + 1 ) ) C_ RR -> ( < Or RR -> < Or ( 1 ... ( N + 1 ) ) ) ) |
| 66 |
63 64 65
|
mpisyl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or ( 1 ... ( N + 1 ) ) ) |
| 67 |
4
|
adantr |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A C_ RR ) |
| 68 |
|
soss |
|- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
| 69 |
67 64 68
|
mpisyl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or A ) |
| 70 |
26
|
adantr |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) |
| 71 |
|
soisores |
|- ( ( ( < Or ( 1 ... ( N + 1 ) ) /\ < Or A ) /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ t C_ ( 1 ... ( N + 1 ) ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) ) |
| 72 |
66 69 70 40 71
|
syl22anc |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) ) |
| 73 |
59 72
|
mpbird |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) Isom < , < ( t , ( G " t ) ) ) |
| 74 |
|
isocnv |
|- ( ( G |` t ) Isom < , < ( t , ( G " t ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) ) |
| 75 |
73 74
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) ) |
| 76 |
|
isotr |
|- ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) |
| 77 |
76
|
ex |
|- ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 78 |
75 77
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 79 |
|
resco |
|- ( ( F o. G ) |` t ) = ( F o. ( G |` t ) ) |
| 80 |
79
|
coeq1i |
|- ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( ( F o. ( G |` t ) ) o. `' ( G |` t ) ) |
| 81 |
|
coass |
|- ( ( F o. ( G |` t ) ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) |
| 82 |
80 81
|
eqtri |
|- ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) |
| 83 |
|
f1ores |
|- ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) ) |
| 84 |
7 83
|
sylan |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) ) |
| 85 |
|
f1ococnv2 |
|- ( ( G |` t ) : t -1-1-onto-> ( G " t ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) ) |
| 86 |
84 85
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) ) |
| 87 |
86
|
coeq2d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F o. ( _I |` ( G " t ) ) ) ) |
| 88 |
|
coires1 |
|- ( F o. ( _I |` ( G " t ) ) ) = ( F |` ( G " t ) ) |
| 89 |
87 88
|
eqtrdi |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F |` ( G " t ) ) ) |
| 90 |
82 89
|
eqtrid |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) ) |
| 91 |
|
isoeq1 |
|- ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 92 |
90 91
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 93 |
|
imaco |
|- ( ( F o. G ) " t ) = ( F " ( G " t ) ) |
| 94 |
|
isoeq5 |
|- ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 95 |
93 94
|
ax-mp |
|- ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) |
| 96 |
92 95
|
bitrdi |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 97 |
78 96
|
sylibd |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 98 |
49 97
|
anim12d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) |
| 99 |
47
|
breq2d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` ( G " t ) ) <-> S <_ ( # ` t ) ) ) |
| 100 |
99
|
biimprd |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` t ) -> S <_ ( # ` ( G " t ) ) ) ) |
| 101 |
|
isotr |
|- ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) |
| 102 |
101
|
ex |
|- ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 103 |
75 102
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 104 |
|
isoeq1 |
|- ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 105 |
90 104
|
syl |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) ) |
| 106 |
|
isoeq5 |
|- ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 107 |
93 106
|
ax-mp |
|- ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) |
| 108 |
105 107
|
bitrdi |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 109 |
103 108
|
sylibd |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 110 |
100 109
|
anim12d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) |
| 111 |
98 110
|
orim12d |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) ) |
| 112 |
|
fveq2 |
|- ( s = ( G " t ) -> ( # ` s ) = ( # ` ( G " t ) ) ) |
| 113 |
112
|
breq2d |
|- ( s = ( G " t ) -> ( R <_ ( # ` s ) <-> R <_ ( # ` ( G " t ) ) ) ) |
| 114 |
|
reseq2 |
|- ( s = ( G " t ) -> ( F |` s ) = ( F |` ( G " t ) ) ) |
| 115 |
|
isoeq1 |
|- ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) ) |
| 116 |
114 115
|
syl |
|- ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) ) |
| 117 |
|
isoeq4 |
|- ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) ) ) |
| 118 |
|
imaeq2 |
|- ( s = ( G " t ) -> ( F " s ) = ( F " ( G " t ) ) ) |
| 119 |
|
isoeq5 |
|- ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 120 |
118 119
|
syl |
|- ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 121 |
116 117 120
|
3bitrd |
|- ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 122 |
113 121
|
anbi12d |
|- ( s = ( G " t ) -> ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) <-> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) |
| 123 |
112
|
breq2d |
|- ( s = ( G " t ) -> ( S <_ ( # ` s ) <-> S <_ ( # ` ( G " t ) ) ) ) |
| 124 |
|
isoeq1 |
|- ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) ) |
| 125 |
114 124
|
syl |
|- ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) ) |
| 126 |
|
isoeq4 |
|- ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) ) ) |
| 127 |
|
isoeq5 |
|- ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 128 |
118 127
|
syl |
|- ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 129 |
125 126 128
|
3bitrd |
|- ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) |
| 130 |
123 129
|
anbi12d |
|- ( s = ( G " t ) -> ( ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) <-> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) |
| 131 |
122 130
|
orbi12d |
|- ( s = ( G " t ) -> ( ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) <-> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) ) |
| 132 |
131
|
rspcev |
|- ( ( ( G " t ) e. ~P A /\ ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |
| 133 |
35 111 132
|
syl6an |
|- ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) |
| 134 |
23 133
|
sylan2b |
|- ( ( ph /\ t e. ~P ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) |
| 135 |
134
|
rexlimdva |
|- ( ph -> ( E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) ) |
| 136 |
22 135
|
mpd |
|- ( ph -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |