| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erdsze2.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | erdsze2.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ ) | 
						
							| 3 |  | erdsze2.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ ℝ ) | 
						
							| 4 |  | erdsze2.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 5 |  | erdsze2lem.n | ⊢ 𝑁  =  ( ( 𝑅  −  1 )  ·  ( 𝑆  −  1 ) ) | 
						
							| 6 |  | erdsze2lem.l | ⊢ ( 𝜑  →  𝑁  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 7 |  | erdsze2lem.g | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ 𝐴 ) | 
						
							| 8 |  | erdsze2lem.i | ⊢ ( 𝜑  →  𝐺  Isom   <  ,   <  ( ( 1 ... ( 𝑁  +  1 ) ) ,  ran  𝐺 ) ) | 
						
							| 9 |  | nnm1nn0 | ⊢ ( 𝑅  ∈  ℕ  →  ( 𝑅  −  1 )  ∈  ℕ0 ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  ( 𝑅  −  1 )  ∈  ℕ0 ) | 
						
							| 11 |  | nnm1nn0 | ⊢ ( 𝑆  ∈  ℕ  →  ( 𝑆  −  1 )  ∈  ℕ0 ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  ( 𝑆  −  1 )  ∈  ℕ0 ) | 
						
							| 13 | 10 12 | nn0mulcld | ⊢ ( 𝜑  →  ( ( 𝑅  −  1 )  ·  ( 𝑆  −  1 ) )  ∈  ℕ0 ) | 
						
							| 14 | 5 13 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 15 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 17 |  | f1co | ⊢ ( ( 𝐹 : 𝐴 –1-1→ ℝ  ∧  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ 𝐴 )  →  ( 𝐹  ∘  𝐺 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ℝ ) | 
						
							| 18 | 3 7 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ℝ ) | 
						
							| 19 | 14 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 20 | 19 | ltp1d | ⊢ ( 𝜑  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 21 | 5 20 | eqbrtrrid | ⊢ ( 𝜑  →  ( ( 𝑅  −  1 )  ·  ( 𝑆  −  1 ) )  <  ( 𝑁  +  1 ) ) | 
						
							| 22 | 16 18 1 2 21 | erdsze | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝒫  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) ) | 
						
							| 23 |  | velpw | ⊢ ( 𝑡  ∈  𝒫  ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 24 |  | imassrn | ⊢ ( 𝐺  “  𝑡 )  ⊆  ran  𝐺 | 
						
							| 25 |  | f1f | ⊢ ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ 𝐴  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 26 | 7 25 | syl | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 27 | 26 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  𝐴 ) | 
						
							| 28 | 24 27 | sstrid | ⊢ ( 𝜑  →  ( 𝐺  “  𝑡 )  ⊆  𝐴 ) | 
						
							| 29 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 30 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ℝ  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 31 | 4 29 30 | sylancl | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 32 |  | elpw2g | ⊢ ( 𝐴  ∈  V  →  ( ( 𝐺  “  𝑡 )  ∈  𝒫  𝐴  ↔  ( 𝐺  “  𝑡 )  ⊆  𝐴 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  “  𝑡 )  ∈  𝒫  𝐴  ↔  ( 𝐺  “  𝑡 )  ⊆  𝐴 ) ) | 
						
							| 34 | 28 33 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  “  𝑡 )  ∈  𝒫  𝐴 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  “  𝑡 )  ∈  𝒫  𝐴 ) | 
						
							| 36 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 37 | 36 | f1imaen | ⊢ ( ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ 𝐴  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  “  𝑡 )  ≈  𝑡 ) | 
						
							| 38 | 7 37 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  “  𝑡 )  ≈  𝑡 ) | 
						
							| 39 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 41 |  | ssfi | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑡  ∈  Fin ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑡  ∈  Fin ) | 
						
							| 43 |  | enfii | ⊢ ( ( 𝑡  ∈  Fin  ∧  ( 𝐺  “  𝑡 )  ≈  𝑡 )  →  ( 𝐺  “  𝑡 )  ∈  Fin ) | 
						
							| 44 | 42 38 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  “  𝑡 )  ∈  Fin ) | 
						
							| 45 |  | hashen | ⊢ ( ( ( 𝐺  “  𝑡 )  ∈  Fin  ∧  𝑡  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  “  𝑡 ) )  =  ( ♯ ‘ 𝑡 )  ↔  ( 𝐺  “  𝑡 )  ≈  𝑡 ) ) | 
						
							| 46 | 44 42 45 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  𝑡 ) )  =  ( ♯ ‘ 𝑡 )  ↔  ( 𝐺  “  𝑡 )  ≈  𝑡 ) ) | 
						
							| 47 | 38 46 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  =  ( ♯ ‘ 𝑡 ) ) | 
						
							| 48 | 47 | breq2d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ↔  𝑅  ≤  ( ♯ ‘ 𝑡 ) ) ) | 
						
							| 49 | 48 | biimprd | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  →  𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 50 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝐺  Isom   <  ,   <  ( ( 1 ... ( 𝑁  +  1 ) ) ,  ran  𝐺 ) ) | 
						
							| 51 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 52 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝑥  ∈  𝑡 ) | 
						
							| 53 | 51 52 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 54 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝑦  ∈  𝑡 ) | 
						
							| 55 | 51 54 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 56 |  | isorel | ⊢ ( ( 𝐺  Isom   <  ,   <  ( ( 1 ... ( 𝑁  +  1 ) ) ,  ran  𝐺 )  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) )  →  ( 𝑥  <  𝑦  ↔  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 57 | 50 53 55 56 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  ( 𝑥  <  𝑦  ↔  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 58 | 57 | biimpd | ⊢ ( ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑡 ) )  →  ( 𝑥  <  𝑦  →  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 59 | 58 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ( 𝑥  <  𝑦  →  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 60 |  | elfznn | ⊢ ( 𝑡  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  𝑡  ∈  ℕ ) | 
						
							| 61 | 60 | nnred | ⊢ ( 𝑡  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  𝑡  ∈  ℝ ) | 
						
							| 62 | 61 | ssriv | ⊢ ( 1 ... ( 𝑁  +  1 ) )  ⊆  ℝ | 
						
							| 63 | 62 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 1 ... ( 𝑁  +  1 ) )  ⊆  ℝ ) | 
						
							| 64 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 65 |  | soss | ⊢ ( ( 1 ... ( 𝑁  +  1 ) )  ⊆  ℝ  →  (  <   Or  ℝ  →   <   Or  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 66 | 63 64 65 | mpisyl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →   <   Or  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 67 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 68 |  | soss | ⊢ ( 𝐴  ⊆  ℝ  →  (  <   Or  ℝ  →   <   Or  𝐴 ) ) | 
						
							| 69 | 67 64 68 | mpisyl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →   <   Or  𝐴 ) | 
						
							| 70 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 71 |  | soisores | ⊢ ( ( (  <   Or  ( 1 ... ( 𝑁  +  1 ) )  ∧   <   Or  𝐴 )  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) )  →  ( ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( 𝐺  “  𝑡 ) )  ↔  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ( 𝑥  <  𝑦  →  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 72 | 66 69 70 40 71 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( 𝐺  “  𝑡 ) )  ↔  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ( 𝑥  <  𝑦  →  ( 𝐺 ‘ 𝑥 )  <  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 73 | 59 72 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 74 |  | isocnv | ⊢ ( ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( 𝐺  “  𝑡 ) )  →  ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 ) ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 ) ) | 
						
							| 76 |  | isotr | ⊢ ( ( ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 78 | 75 77 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 79 |  | resco | ⊢ ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  =  ( 𝐹  ∘  ( 𝐺  ↾  𝑡 ) ) | 
						
							| 80 | 79 | coeq1i | ⊢ ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( ( 𝐹  ∘  ( 𝐺  ↾  𝑡 ) )  ∘  ◡ ( 𝐺  ↾  𝑡 ) ) | 
						
							| 81 |  | coass | ⊢ ( ( 𝐹  ∘  ( 𝐺  ↾  𝑡 ) )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( 𝐹  ∘  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) ) ) | 
						
							| 82 | 80 81 | eqtri | ⊢ ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( 𝐹  ∘  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) ) ) | 
						
							| 83 |  | f1ores | ⊢ ( ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ 𝐴  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺  “  𝑡 ) ) | 
						
							| 84 | 7 83 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺  “  𝑡 ) ) | 
						
							| 85 |  | f1ococnv2 | ⊢ ( ( 𝐺  ↾  𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺  “  𝑡 )  →  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  (  I   ↾  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  (  I   ↾  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 87 | 86 | coeq2d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹  ∘  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) ) )  =  ( 𝐹  ∘  (  I   ↾  ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 88 |  | coires1 | ⊢ ( 𝐹  ∘  (  I   ↾  ( 𝐺  “  𝑡 ) ) )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) ) | 
						
							| 89 | 87 88 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹  ∘  ( ( 𝐺  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) ) )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 90 | 82 89 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 91 |  | isoeq1 | ⊢ ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 93 |  | imaco | ⊢ ( ( 𝐹  ∘  𝐺 )  “  𝑡 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) | 
						
							| 94 |  | isoeq5 | ⊢ ( ( ( 𝐹  ∘  𝐺 )  “  𝑡 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 95 | 93 94 | ax-mp | ⊢ ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 96 | 92 95 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 97 | 78 96 | sylibd | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 98 | 49 97 | anim12d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  →  ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) | 
						
							| 99 | 47 | breq2d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ↔  𝑆  ≤  ( ♯ ‘ 𝑡 ) ) ) | 
						
							| 100 | 99 | biimprd | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  →  𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 101 |  | isotr | ⊢ ( ( ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ◡ ( 𝐺  ↾  𝑡 )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  𝑡 )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 103 | 75 102 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 104 |  | isoeq1 | ⊢ ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 105 | 90 104 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) ) | 
						
							| 106 |  | isoeq5 | ⊢ ( ( ( 𝐹  ∘  𝐺 )  “  𝑡 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 107 | 93 106 | ax-mp | ⊢ ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 108 | 105 107 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  ∘  ◡ ( 𝐺  ↾  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 109 | 103 108 | sylibd | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) )  →  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 110 | 100 109 | anim12d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  →  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) | 
						
							| 111 | 98 110 | orim12d | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) )  →  ( ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) ) | 
						
							| 112 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ♯ ‘ 𝑠 )  =  ( ♯ ‘ ( 𝐺  “  𝑡 ) ) ) | 
						
							| 113 | 112 | breq2d | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ↔  𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 114 |  | reseq2 | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( 𝐹  ↾  𝑠 )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 115 |  | isoeq1 | ⊢ ( ( 𝐹  ↾  𝑠 )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 116 | 114 115 | syl | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 117 |  | isoeq4 | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 118 |  | imaeq2 | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) | 
						
							| 119 |  | isoeq5 | ⊢ ( ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 121 | 116 117 120 | 3bitrd | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 122 | 113 121 | anbi12d | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ↔  ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) | 
						
							| 123 | 112 | breq2d | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ↔  𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) ) ) ) | 
						
							| 124 |  | isoeq1 | ⊢ ( ( 𝐹  ↾  𝑠 )  =  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 125 | 114 124 | syl | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 126 |  | isoeq4 | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 127 |  | isoeq5 | ⊢ ( ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( 𝐺  “  𝑡 ) )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 128 | 118 127 | syl | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 129 | 125 126 128 | 3bitrd | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) )  ↔  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) | 
						
							| 130 | 123 129 | anbi12d | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ↔  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) | 
						
							| 131 | 122 130 | orbi12d | ⊢ ( 𝑠  =  ( 𝐺  “  𝑡 )  →  ( ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) )  ↔  ( ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) ) ) | 
						
							| 132 | 131 | rspcev | ⊢ ( ( ( 𝐺  “  𝑡 )  ∈  𝒫  𝐴  ∧  ( ( 𝑅  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,   <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ ( 𝐺  “  𝑡 ) )  ∧  ( 𝐹  ↾  ( 𝐺  “  𝑡 ) )  Isom   <  ,  ◡  <  ( ( 𝐺  “  𝑡 ) ,  ( 𝐹  “  ( 𝐺  “  𝑡 ) ) ) ) ) )  →  ∃ 𝑠  ∈  𝒫  𝐴 ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) ) | 
						
							| 133 | 35 111 132 | syl6an | ⊢ ( ( 𝜑  ∧  𝑡  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) )  →  ∃ 𝑠  ∈  𝒫  𝐴 ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) ) ) | 
						
							| 134 | 23 133 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) )  →  ∃ 𝑠  ∈  𝒫  𝐴 ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) ) ) | 
						
							| 135 | 134 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝒫  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑅  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,   <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑡 )  ∧  ( ( 𝐹  ∘  𝐺 )  ↾  𝑡 )  Isom   <  ,  ◡  <  ( 𝑡 ,  ( ( 𝐹  ∘  𝐺 )  “  𝑡 ) ) ) )  →  ∃ 𝑠  ∈  𝒫  𝐴 ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) ) ) | 
						
							| 136 | 22 135 | mpd | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  𝒫  𝐴 ( ( 𝑅  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,   <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) )  ∨  ( 𝑆  ≤  ( ♯ ‘ 𝑠 )  ∧  ( 𝐹  ↾  𝑠 )  Isom   <  ,  ◡  <  ( 𝑠 ,  ( 𝐹  “  𝑠 ) ) ) ) ) |