Metamath Proof Explorer


Theorem erdsze2lem2

Description: Lemma for erdsze2 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φ R
erdsze2.s φ S
erdsze2.f φ F : A 1-1
erdsze2.a φ A
erdsze2lem.n N = R 1 S 1
erdsze2lem.l φ N < A
erdsze2lem.g φ G : 1 N + 1 1-1 A
erdsze2lem.i φ G Isom < , < 1 N + 1 ran G
Assertion erdsze2lem2 φ s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s

Proof

Step Hyp Ref Expression
1 erdsze2.r φ R
2 erdsze2.s φ S
3 erdsze2.f φ F : A 1-1
4 erdsze2.a φ A
5 erdsze2lem.n N = R 1 S 1
6 erdsze2lem.l φ N < A
7 erdsze2lem.g φ G : 1 N + 1 1-1 A
8 erdsze2lem.i φ G Isom < , < 1 N + 1 ran G
9 nnm1nn0 R R 1 0
10 1 9 syl φ R 1 0
11 nnm1nn0 S S 1 0
12 2 11 syl φ S 1 0
13 10 12 nn0mulcld φ R 1 S 1 0
14 5 13 eqeltrid φ N 0
15 nn0p1nn N 0 N + 1
16 14 15 syl φ N + 1
17 f1co F : A 1-1 G : 1 N + 1 1-1 A F G : 1 N + 1 1-1
18 3 7 17 syl2anc φ F G : 1 N + 1 1-1
19 14 nn0red φ N
20 19 ltp1d φ N < N + 1
21 5 20 eqbrtrrid φ R 1 S 1 < N + 1
22 16 18 1 2 21 erdsze φ t 𝒫 1 N + 1 R t F G t Isom < , < t F G t S t F G t Isom < , < -1 t F G t
23 velpw t 𝒫 1 N + 1 t 1 N + 1
24 imassrn G t ran G
25 f1f G : 1 N + 1 1-1 A G : 1 N + 1 A
26 7 25 syl φ G : 1 N + 1 A
27 26 frnd φ ran G A
28 24 27 sstrid φ G t A
29 reex V
30 ssexg A V A V
31 4 29 30 sylancl φ A V
32 elpw2g A V G t 𝒫 A G t A
33 31 32 syl φ G t 𝒫 A G t A
34 28 33 mpbird φ G t 𝒫 A
35 34 adantr φ t 1 N + 1 G t 𝒫 A
36 vex t V
37 36 f1imaen G : 1 N + 1 1-1 A t 1 N + 1 G t t
38 7 37 sylan φ t 1 N + 1 G t t
39 fzfid φ t 1 N + 1 1 N + 1 Fin
40 simpr φ t 1 N + 1 t 1 N + 1
41 ssfi 1 N + 1 Fin t 1 N + 1 t Fin
42 39 40 41 syl2anc φ t 1 N + 1 t Fin
43 enfii t Fin G t t G t Fin
44 42 38 43 syl2anc φ t 1 N + 1 G t Fin
45 hashen G t Fin t Fin G t = t G t t
46 44 42 45 syl2anc φ t 1 N + 1 G t = t G t t
47 38 46 mpbird φ t 1 N + 1 G t = t
48 47 breq2d φ t 1 N + 1 R G t R t
49 48 biimprd φ t 1 N + 1 R t R G t
50 8 ad2antrr φ t 1 N + 1 x t y t G Isom < , < 1 N + 1 ran G
51 40 adantr φ t 1 N + 1 x t y t t 1 N + 1
52 simprl φ t 1 N + 1 x t y t x t
53 51 52 sseldd φ t 1 N + 1 x t y t x 1 N + 1
54 simprr φ t 1 N + 1 x t y t y t
55 51 54 sseldd φ t 1 N + 1 x t y t y 1 N + 1
56 isorel G Isom < , < 1 N + 1 ran G x 1 N + 1 y 1 N + 1 x < y G x < G y
57 50 53 55 56 syl12anc φ t 1 N + 1 x t y t x < y G x < G y
58 57 biimpd φ t 1 N + 1 x t y t x < y G x < G y
59 58 ralrimivva φ t 1 N + 1 x t y t x < y G x < G y
60 elfznn t 1 N + 1 t
61 60 nnred t 1 N + 1 t
62 61 ssriv 1 N + 1
63 62 a1i φ t 1 N + 1 1 N + 1
64 ltso < Or
65 soss 1 N + 1 < Or < Or 1 N + 1
66 63 64 65 mpisyl φ t 1 N + 1 < Or 1 N + 1
67 4 adantr φ t 1 N + 1 A
68 soss A < Or < Or A
69 67 64 68 mpisyl φ t 1 N + 1 < Or A
70 26 adantr φ t 1 N + 1 G : 1 N + 1 A
71 soisores < Or 1 N + 1 < Or A G : 1 N + 1 A t 1 N + 1 G t Isom < , < t G t x t y t x < y G x < G y
72 66 69 70 40 71 syl22anc φ t 1 N + 1 G t Isom < , < t G t x t y t x < y G x < G y
73 59 72 mpbird φ t 1 N + 1 G t Isom < , < t G t
74 isocnv G t Isom < , < t G t G t -1 Isom < , < G t t
75 73 74 syl φ t 1 N + 1 G t -1 Isom < , < G t t
76 isotr G t -1 Isom < , < G t t F G t Isom < , < t F G t F G t G t -1 Isom < , < G t F G t
77 76 ex G t -1 Isom < , < G t t F G t Isom < , < t F G t F G t G t -1 Isom < , < G t F G t
78 75 77 syl φ t 1 N + 1 F G t Isom < , < t F G t F G t G t -1 Isom < , < G t F G t
79 resco F G t = F G t
80 79 coeq1i F G t G t -1 = F G t G t -1
81 coass F G t G t -1 = F G t G t -1
82 80 81 eqtri F G t G t -1 = F G t G t -1
83 f1ores G : 1 N + 1 1-1 A t 1 N + 1 G t : t 1-1 onto G t
84 7 83 sylan φ t 1 N + 1 G t : t 1-1 onto G t
85 f1ococnv2 G t : t 1-1 onto G t G t G t -1 = I G t
86 84 85 syl φ t 1 N + 1 G t G t -1 = I G t
87 86 coeq2d φ t 1 N + 1 F G t G t -1 = F I G t
88 coires1 F I G t = F G t
89 87 88 eqtrdi φ t 1 N + 1 F G t G t -1 = F G t
90 82 89 eqtrid φ t 1 N + 1 F G t G t -1 = F G t
91 isoeq1 F G t G t -1 = F G t F G t G t -1 Isom < , < G t F G t F G t Isom < , < G t F G t
92 90 91 syl φ t 1 N + 1 F G t G t -1 Isom < , < G t F G t F G t Isom < , < G t F G t
93 imaco F G t = F G t
94 isoeq5 F G t = F G t F G t Isom < , < G t F G t F G t Isom < , < G t F G t
95 93 94 ax-mp F G t Isom < , < G t F G t F G t Isom < , < G t F G t
96 92 95 bitrdi φ t 1 N + 1 F G t G t -1 Isom < , < G t F G t F G t Isom < , < G t F G t
97 78 96 sylibd φ t 1 N + 1 F G t Isom < , < t F G t F G t Isom < , < G t F G t
98 49 97 anim12d φ t 1 N + 1 R t F G t Isom < , < t F G t R G t F G t Isom < , < G t F G t
99 47 breq2d φ t 1 N + 1 S G t S t
100 99 biimprd φ t 1 N + 1 S t S G t
101 isotr G t -1 Isom < , < G t t F G t Isom < , < -1 t F G t F G t G t -1 Isom < , < -1 G t F G t
102 101 ex G t -1 Isom < , < G t t F G t Isom < , < -1 t F G t F G t G t -1 Isom < , < -1 G t F G t
103 75 102 syl φ t 1 N + 1 F G t Isom < , < -1 t F G t F G t G t -1 Isom < , < -1 G t F G t
104 isoeq1 F G t G t -1 = F G t F G t G t -1 Isom < , < -1 G t F G t F G t Isom < , < -1 G t F G t
105 90 104 syl φ t 1 N + 1 F G t G t -1 Isom < , < -1 G t F G t F G t Isom < , < -1 G t F G t
106 isoeq5 F G t = F G t F G t Isom < , < -1 G t F G t F G t Isom < , < -1 G t F G t
107 93 106 ax-mp F G t Isom < , < -1 G t F G t F G t Isom < , < -1 G t F G t
108 105 107 bitrdi φ t 1 N + 1 F G t G t -1 Isom < , < -1 G t F G t F G t Isom < , < -1 G t F G t
109 103 108 sylibd φ t 1 N + 1 F G t Isom < , < -1 t F G t F G t Isom < , < -1 G t F G t
110 100 109 anim12d φ t 1 N + 1 S t F G t Isom < , < -1 t F G t S G t F G t Isom < , < -1 G t F G t
111 98 110 orim12d φ t 1 N + 1 R t F G t Isom < , < t F G t S t F G t Isom < , < -1 t F G t R G t F G t Isom < , < G t F G t S G t F G t Isom < , < -1 G t F G t
112 fveq2 s = G t s = G t
113 112 breq2d s = G t R s R G t
114 reseq2 s = G t F s = F G t
115 isoeq1 F s = F G t F s Isom < , < s F s F G t Isom < , < s F s
116 114 115 syl s = G t F s Isom < , < s F s F G t Isom < , < s F s
117 isoeq4 s = G t F G t Isom < , < s F s F G t Isom < , < G t F s
118 imaeq2 s = G t F s = F G t
119 isoeq5 F s = F G t F G t Isom < , < G t F s F G t Isom < , < G t F G t
120 118 119 syl s = G t F G t Isom < , < G t F s F G t Isom < , < G t F G t
121 116 117 120 3bitrd s = G t F s Isom < , < s F s F G t Isom < , < G t F G t
122 113 121 anbi12d s = G t R s F s Isom < , < s F s R G t F G t Isom < , < G t F G t
123 112 breq2d s = G t S s S G t
124 isoeq1 F s = F G t F s Isom < , < -1 s F s F G t Isom < , < -1 s F s
125 114 124 syl s = G t F s Isom < , < -1 s F s F G t Isom < , < -1 s F s
126 isoeq4 s = G t F G t Isom < , < -1 s F s F G t Isom < , < -1 G t F s
127 isoeq5 F s = F G t F G t Isom < , < -1 G t F s F G t Isom < , < -1 G t F G t
128 118 127 syl s = G t F G t Isom < , < -1 G t F s F G t Isom < , < -1 G t F G t
129 125 126 128 3bitrd s = G t F s Isom < , < -1 s F s F G t Isom < , < -1 G t F G t
130 123 129 anbi12d s = G t S s F s Isom < , < -1 s F s S G t F G t Isom < , < -1 G t F G t
131 122 130 orbi12d s = G t R s F s Isom < , < s F s S s F s Isom < , < -1 s F s R G t F G t Isom < , < G t F G t S G t F G t Isom < , < -1 G t F G t
132 131 rspcev G t 𝒫 A R G t F G t Isom < , < G t F G t S G t F G t Isom < , < -1 G t F G t s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s
133 35 111 132 syl6an φ t 1 N + 1 R t F G t Isom < , < t F G t S t F G t Isom < , < -1 t F G t s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s
134 23 133 sylan2b φ t 𝒫 1 N + 1 R t F G t Isom < , < t F G t S t F G t Isom < , < -1 t F G t s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s
135 134 rexlimdva φ t 𝒫 1 N + 1 R t F G t Isom < , < t F G t S t F G t Isom < , < -1 t F G t s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s
136 22 135 mpd φ s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s