Metamath Proof Explorer


Theorem soisores

Description: Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Assertion soisores ROrBSOrCF:BCABFAIsomR,SAFAxAyAxRyFxSFy

Proof

Step Hyp Ref Expression
1 isorel FAIsomR,SAFAxAyAxRyFAxSFAy
2 fvres xAFAx=Fx
3 fvres yAFAy=Fy
4 2 3 breqan12d xAyAFAxSFAyFxSFy
5 4 adantl FAIsomR,SAFAxAyAFAxSFAyFxSFy
6 1 5 bitrd FAIsomR,SAFAxAyAxRyFxSFy
7 6 biimpd FAIsomR,SAFAxAyAxRyFxSFy
8 7 ralrimivva FAIsomR,SAFAxAyAxRyFxSFy
9 ffn F:BCFFnB
10 9 ad2antrl ROrBSOrCF:BCABFFnB
11 simprr ROrBSOrCF:BCABAB
12 fnssres FFnBABFAFnA
13 10 11 12 syl2anc ROrBSOrCF:BCABFAFnA
14 13 3adant3 ROrBSOrCF:BCABxAyAxRyFxSFyFAFnA
15 df-ima FA=ranFA
16 15 eqcomi ranFA=FA
17 16 a1i ROrBSOrCF:BCABxAyAxRyFxSFyranFA=FA
18 fvres zAFAz=Fz
19 fvres wAFAw=Fw
20 18 19 eqeqan12d zAwAFAz=FAwFz=Fw
21 20 adantl ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFAz=FAwFz=Fw
22 simprl ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzA
23 simprr ROrBSOrCF:BCABxAyAxRyFxSFyzAwAwA
24 simpl3 ROrBSOrCF:BCABxAyAxRyFxSFyzAwAxAyAxRyFxSFy
25 breq1 x=zxRyzRy
26 fveq2 x=zFx=Fz
27 26 breq1d x=zFxSFyFzSFy
28 25 27 imbi12d x=zxRyFxSFyzRyFzSFy
29 breq2 y=wzRyzRw
30 fveq2 y=wFy=Fw
31 30 breq2d y=wFzSFyFzSFw
32 29 31 imbi12d y=wzRyFzSFyzRwFzSFw
33 28 32 rspc2va zAwAxAyAxRyFxSFyzRwFzSFw
34 22 23 24 33 syl21anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRwFzSFw
35 breq1 x=wxRywRy
36 fveq2 x=wFx=Fw
37 36 breq1d x=wFxSFyFwSFy
38 35 37 imbi12d x=wxRyFxSFywRyFwSFy
39 breq2 y=zwRywRz
40 fveq2 y=zFy=Fz
41 40 breq2d y=zFwSFyFwSFz
42 39 41 imbi12d y=zwRyFwSFywRzFwSFz
43 38 42 rspc2va wAzAxAyAxRyFxSFywRzFwSFz
44 23 22 24 43 syl21anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAwRzFwSFz
45 34 44 orim12d ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRwwRzFzSFwFwSFz
46 45 con3d ROrBSOrCF:BCABxAyAxRyFxSFyzAwA¬FzSFwFwSFz¬zRwwRz
47 simpl1r ROrBSOrCF:BCABxAyAxRyFxSFyzAwASOrC
48 simpl2l ROrBSOrCF:BCABxAyAxRyFxSFyzAwAF:BC
49 simpl2r ROrBSOrCF:BCABxAyAxRyFxSFyzAwAAB
50 49 22 sseldd ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzB
51 48 50 ffvelcdmd ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFzC
52 49 23 sseldd ROrBSOrCF:BCABxAyAxRyFxSFyzAwAwB
53 48 52 ffvelcdmd ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFwC
54 sotrieq SOrCFzCFwCFz=Fw¬FzSFwFwSFz
55 47 51 53 54 syl12anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFz=Fw¬FzSFwFwSFz
56 simpl1l ROrBSOrCF:BCABxAyAxRyFxSFyzAwAROrB
57 sotrieq ROrBzBwBz=w¬zRwwRz
58 56 50 52 57 syl12anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAz=w¬zRwwRz
59 46 55 58 3imtr4d ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFz=Fwz=w
60 21 59 sylbid ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFAz=FAwz=w
61 60 ralrimivva ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFAz=FAwz=w
62 dff1o6 FA:A1-1 ontoFAFAFnAranFA=FAzAwAFAz=FAwz=w
63 14 17 61 62 syl3anbrc ROrBSOrCF:BCABxAyAxRyFxSFyFA:A1-1 ontoFA
64 fveq2 z=wFz=Fw
65 64 a1i ROrBSOrCF:BCABxAyAxRyFxSFyzAwAz=wFz=Fw
66 65 44 orim12d ROrBSOrCF:BCABxAyAxRyFxSFyzAwAz=wwRzFz=FwFwSFz
67 66 con3d ROrBSOrCF:BCABxAyAxRyFxSFyzAwA¬Fz=FwFwSFz¬z=wwRz
68 sotric SOrCFzCFwCFzSFw¬Fz=FwFwSFz
69 47 51 53 68 syl12anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFzSFw¬Fz=FwFwSFz
70 sotric ROrBzBwBzRw¬z=wwRz
71 56 50 52 70 syl12anc ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRw¬z=wwRz
72 67 69 71 3imtr4d ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFzSFwzRw
73 34 72 impbid ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRwFzSFw
74 18 19 breqan12d zAwAFAzSFAwFzSFw
75 74 adantl ROrBSOrCF:BCABxAyAxRyFxSFyzAwAFAzSFAwFzSFw
76 73 75 bitr4d ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRwFAzSFAw
77 76 ralrimivva ROrBSOrCF:BCABxAyAxRyFxSFyzAwAzRwFAzSFAw
78 df-isom FAIsomR,SAFAFA:A1-1 ontoFAzAwAzRwFAzSFAw
79 63 77 78 sylanbrc ROrBSOrCF:BCABxAyAxRyFxSFyFAIsomR,SAFA
80 79 3expia ROrBSOrCF:BCABxAyAxRyFxSFyFAIsomR,SAFA
81 8 80 impbid2 ROrBSOrCF:BCABFAIsomR,SAFAxAyAxRyFxSFy