Metamath Proof Explorer


Theorem isorel

Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isorel HIsomR,SABCADACRDHCSHD

Proof

Step Hyp Ref Expression
1 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
2 1 simprbi HIsomR,SABxAyAxRyHxSHy
3 breq1 x=CxRyCRy
4 fveq2 x=CHx=HC
5 4 breq1d x=CHxSHyHCSHy
6 3 5 bibi12d x=CxRyHxSHyCRyHCSHy
7 breq2 y=DCRyCRD
8 fveq2 y=DHy=HD
9 8 breq2d y=DHCSHyHCSHD
10 7 9 bibi12d y=DCRyHCSHyCRDHCSHD
11 6 10 rspc2v CADAxAyAxRyHxSHyCRDHCSHD
12 2 11 mpan9 HIsomR,SABCADACRDHCSHD