Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
2 |
|
erdsze2.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
3 |
|
erdsze2.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ ℝ ) |
4 |
|
erdsze2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
5 |
|
erdsze2lem.n |
⊢ 𝑁 = ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) |
6 |
|
erdsze2lem.l |
⊢ ( 𝜑 → 𝑁 < ( ♯ ‘ 𝐴 ) ) |
7 |
|
nnm1nn0 |
⊢ ( 𝑅 ∈ ℕ → ( 𝑅 − 1 ) ∈ ℕ0 ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝑅 − 1 ) ∈ ℕ0 ) |
9 |
|
nnm1nn0 |
⊢ ( 𝑆 ∈ ℕ → ( 𝑆 − 1 ) ∈ ℕ0 ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 𝑆 − 1 ) ∈ ℕ0 ) |
11 |
8 10
|
nn0mulcld |
⊢ ( 𝜑 → ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) ∈ ℕ0 ) |
12 |
5 11
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
13 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
14 |
|
hashfz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → 𝑁 < ( ♯ ‘ 𝐴 ) ) |
18 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
19 |
|
nn0ltp1le |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
20 |
12 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( 𝑁 < ( ♯ ‘ 𝐴 ) ↔ ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
21 |
17 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
22 |
16 21
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ≤ ( ♯ ‘ 𝐴 ) ) |
23 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
25 |
|
hashdom |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ Fin ) → ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) |
29 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
30 |
|
isinffi |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) → ∃ 𝑓 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) |
31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) |
32 |
|
reex |
⊢ ℝ ∈ V |
33 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → 𝐴 ∈ V ) |
34 |
4 32 33
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ V ) |
36 |
|
brdomg |
⊢ ( 𝐴 ∈ V → ( ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → ( ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) ) |
38 |
31 37
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ Fin ) → ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ) |
39 |
27 38
|
pm2.61dan |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ) |
40 |
|
domeng |
⊢ ( 𝐴 ∈ V → ( ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ↔ ∃ 𝑠 ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ) |
41 |
34 40
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 + 1 ) ) ≼ 𝐴 ↔ ∃ 𝑠 ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ) |
42 |
39 41
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) |
43 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → 𝑠 ⊆ 𝐴 ) |
44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
45 |
43 44
|
sstrd |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → 𝑠 ⊆ ℝ ) |
46 |
|
ltso |
⊢ < Or ℝ |
47 |
|
soss |
⊢ ( 𝑠 ⊆ ℝ → ( < Or ℝ → < Or 𝑠 ) ) |
48 |
45 46 47
|
mpisyl |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → < Or 𝑠 ) |
49 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
50 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ) |
51 |
|
enfi |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 → ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ↔ 𝑠 ∈ Fin ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ↔ 𝑠 ∈ Fin ) ) |
53 |
49 52
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → 𝑠 ∈ Fin ) |
54 |
|
fz1iso |
⊢ ( ( < Or 𝑠 ∧ 𝑠 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) |
55 |
48 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) |
56 |
|
isof1o |
⊢ ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –1-1-onto→ 𝑠 ) |
57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –1-1-onto→ 𝑠 ) |
58 |
|
hashen |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ∧ 𝑠 ∈ Fin ) → ( ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝑠 ) ↔ ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ) ) |
59 |
49 53 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝑠 ) ↔ ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ) ) |
60 |
50 59
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝑠 ) ) |
61 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
62 |
60 61
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ♯ ‘ 𝑠 ) = ( 𝑁 + 1 ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( ♯ ‘ 𝑠 ) = ( 𝑁 + 1 ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( 1 ... ( ♯ ‘ 𝑠 ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
65 |
64
|
f1oeq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –1-1-onto→ 𝑠 ↔ 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ 𝑠 ) ) |
66 |
57 65
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ 𝑠 ) |
67 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ 𝑠 → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝑠 ) |
68 |
66 67
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝑠 ) |
69 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑠 ⊆ 𝐴 ) |
70 |
|
f1ss |
⊢ ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) |
71 |
68 69 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) |
72 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) |
73 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –1-1-onto→ 𝑠 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –onto→ 𝑠 ) |
74 |
|
forn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑠 ) ) –onto→ 𝑠 → ran 𝑓 = 𝑠 ) |
75 |
|
isoeq5 |
⊢ ( ran 𝑓 = 𝑠 → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , ran 𝑓 ) ↔ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) ) |
76 |
57 73 74 75
|
4syl |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , ran 𝑓 ) ↔ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) ) |
77 |
72 76
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , ran 𝑓 ) ) |
78 |
|
isoeq4 |
⊢ ( ( 1 ... ( ♯ ‘ 𝑠 ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , ran 𝑓 ) ↔ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) |
79 |
64 78
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , ran 𝑓 ) ↔ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) |
80 |
77 79
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) |
81 |
71 80
|
jca |
⊢ ( ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) |
82 |
81
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) ) |
83 |
82
|
eximdv |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ( ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑠 ) ) , 𝑠 ) → ∃ 𝑓 ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) ) |
84 |
55 83
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 1 ... ( 𝑁 + 1 ) ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) |
85 |
42 84
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑓 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝑓 ) ) ) |