Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze2.r |
β’ ( π β π
β β ) |
2 |
|
erdsze2.s |
β’ ( π β π β β ) |
3 |
|
erdsze2.f |
β’ ( π β πΉ : π΄ β1-1β β ) |
4 |
|
erdsze2.a |
β’ ( π β π΄ β β ) |
5 |
|
erdsze2lem.n |
β’ π = ( ( π
β 1 ) Β· ( π β 1 ) ) |
6 |
|
erdsze2lem.l |
β’ ( π β π < ( β― β π΄ ) ) |
7 |
|
nnm1nn0 |
β’ ( π
β β β ( π
β 1 ) β β0 ) |
8 |
1 7
|
syl |
β’ ( π β ( π
β 1 ) β β0 ) |
9 |
|
nnm1nn0 |
β’ ( π β β β ( π β 1 ) β β0 ) |
10 |
2 9
|
syl |
β’ ( π β ( π β 1 ) β β0 ) |
11 |
8 10
|
nn0mulcld |
β’ ( π β ( ( π
β 1 ) Β· ( π β 1 ) ) β β0 ) |
12 |
5 11
|
eqeltrid |
β’ ( π β π β β0 ) |
13 |
|
peano2nn0 |
β’ ( π β β0 β ( π + 1 ) β β0 ) |
14 |
|
hashfz1 |
β’ ( ( π + 1 ) β β0 β ( β― β ( 1 ... ( π + 1 ) ) ) = ( π + 1 ) ) |
15 |
12 13 14
|
3syl |
β’ ( π β ( β― β ( 1 ... ( π + 1 ) ) ) = ( π + 1 ) ) |
16 |
15
|
adantr |
β’ ( ( π β§ π΄ β Fin ) β ( β― β ( 1 ... ( π + 1 ) ) ) = ( π + 1 ) ) |
17 |
6
|
adantr |
β’ ( ( π β§ π΄ β Fin ) β π < ( β― β π΄ ) ) |
18 |
|
hashcl |
β’ ( π΄ β Fin β ( β― β π΄ ) β β0 ) |
19 |
|
nn0ltp1le |
β’ ( ( π β β0 β§ ( β― β π΄ ) β β0 ) β ( π < ( β― β π΄ ) β ( π + 1 ) β€ ( β― β π΄ ) ) ) |
20 |
12 18 19
|
syl2an |
β’ ( ( π β§ π΄ β Fin ) β ( π < ( β― β π΄ ) β ( π + 1 ) β€ ( β― β π΄ ) ) ) |
21 |
17 20
|
mpbid |
β’ ( ( π β§ π΄ β Fin ) β ( π + 1 ) β€ ( β― β π΄ ) ) |
22 |
16 21
|
eqbrtrd |
β’ ( ( π β§ π΄ β Fin ) β ( β― β ( 1 ... ( π + 1 ) ) ) β€ ( β― β π΄ ) ) |
23 |
|
fzfid |
β’ ( ( π β§ π΄ β Fin ) β ( 1 ... ( π + 1 ) ) β Fin ) |
24 |
|
simpr |
β’ ( ( π β§ π΄ β Fin ) β π΄ β Fin ) |
25 |
|
hashdom |
β’ ( ( ( 1 ... ( π + 1 ) ) β Fin β§ π΄ β Fin ) β ( ( β― β ( 1 ... ( π + 1 ) ) ) β€ ( β― β π΄ ) β ( 1 ... ( π + 1 ) ) βΌ π΄ ) ) |
26 |
23 24 25
|
syl2anc |
β’ ( ( π β§ π΄ β Fin ) β ( ( β― β ( 1 ... ( π + 1 ) ) ) β€ ( β― β π΄ ) β ( 1 ... ( π + 1 ) ) βΌ π΄ ) ) |
27 |
22 26
|
mpbid |
β’ ( ( π β§ π΄ β Fin ) β ( 1 ... ( π + 1 ) ) βΌ π΄ ) |
28 |
|
simpr |
β’ ( ( π β§ Β¬ π΄ β Fin ) β Β¬ π΄ β Fin ) |
29 |
|
fzfid |
β’ ( ( π β§ Β¬ π΄ β Fin ) β ( 1 ... ( π + 1 ) ) β Fin ) |
30 |
|
isinffi |
β’ ( ( Β¬ π΄ β Fin β§ ( 1 ... ( π + 1 ) ) β Fin ) β β π π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) |
31 |
28 29 30
|
syl2anc |
β’ ( ( π β§ Β¬ π΄ β Fin ) β β π π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) |
32 |
|
reex |
β’ β β V |
33 |
|
ssexg |
β’ ( ( π΄ β β β§ β β V ) β π΄ β V ) |
34 |
4 32 33
|
sylancl |
β’ ( π β π΄ β V ) |
35 |
34
|
adantr |
β’ ( ( π β§ Β¬ π΄ β Fin ) β π΄ β V ) |
36 |
|
brdomg |
β’ ( π΄ β V β ( ( 1 ... ( π + 1 ) ) βΌ π΄ β β π π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) ) |
37 |
35 36
|
syl |
β’ ( ( π β§ Β¬ π΄ β Fin ) β ( ( 1 ... ( π + 1 ) ) βΌ π΄ β β π π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) ) |
38 |
31 37
|
mpbird |
β’ ( ( π β§ Β¬ π΄ β Fin ) β ( 1 ... ( π + 1 ) ) βΌ π΄ ) |
39 |
27 38
|
pm2.61dan |
β’ ( π β ( 1 ... ( π + 1 ) ) βΌ π΄ ) |
40 |
|
domeng |
β’ ( π΄ β V β ( ( 1 ... ( π + 1 ) ) βΌ π΄ β β π ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) ) |
41 |
34 40
|
syl |
β’ ( π β ( ( 1 ... ( π + 1 ) ) βΌ π΄ β β π ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) ) |
42 |
39 41
|
mpbid |
β’ ( π β β π ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) |
43 |
|
simprr |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β π β π΄ ) |
44 |
4
|
adantr |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β π΄ β β ) |
45 |
43 44
|
sstrd |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β π β β ) |
46 |
|
ltso |
β’ < Or β |
47 |
|
soss |
β’ ( π β β β ( < Or β β < Or π ) ) |
48 |
45 46 47
|
mpisyl |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β < Or π ) |
49 |
|
fzfid |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( 1 ... ( π + 1 ) ) β Fin ) |
50 |
|
simprl |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( 1 ... ( π + 1 ) ) β π ) |
51 |
|
enfi |
β’ ( ( 1 ... ( π + 1 ) ) β π β ( ( 1 ... ( π + 1 ) ) β Fin β π β Fin ) ) |
52 |
50 51
|
syl |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( ( 1 ... ( π + 1 ) ) β Fin β π β Fin ) ) |
53 |
49 52
|
mpbid |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β π β Fin ) |
54 |
|
fz1iso |
β’ ( ( < Or π β§ π β Fin ) β β π π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) |
55 |
48 53 54
|
syl2anc |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β β π π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) |
56 |
|
isof1o |
β’ ( π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) β π : ( 1 ... ( β― β π ) ) β1-1-ontoβ π ) |
57 |
56
|
adantl |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π : ( 1 ... ( β― β π ) ) β1-1-ontoβ π ) |
58 |
|
hashen |
β’ ( ( ( 1 ... ( π + 1 ) ) β Fin β§ π β Fin ) β ( ( β― β ( 1 ... ( π + 1 ) ) ) = ( β― β π ) β ( 1 ... ( π + 1 ) ) β π ) ) |
59 |
49 53 58
|
syl2anc |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( ( β― β ( 1 ... ( π + 1 ) ) ) = ( β― β π ) β ( 1 ... ( π + 1 ) ) β π ) ) |
60 |
50 59
|
mpbird |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( β― β ( 1 ... ( π + 1 ) ) ) = ( β― β π ) ) |
61 |
15
|
adantr |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( β― β ( 1 ... ( π + 1 ) ) ) = ( π + 1 ) ) |
62 |
60 61
|
eqtr3d |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( β― β π ) = ( π + 1 ) ) |
63 |
62
|
adantr |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( β― β π ) = ( π + 1 ) ) |
64 |
63
|
oveq2d |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( 1 ... ( β― β π ) ) = ( 1 ... ( π + 1 ) ) ) |
65 |
64
|
f1oeq2d |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( π : ( 1 ... ( β― β π ) ) β1-1-ontoβ π β π : ( 1 ... ( π + 1 ) ) β1-1-ontoβ π ) ) |
66 |
57 65
|
mpbid |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π : ( 1 ... ( π + 1 ) ) β1-1-ontoβ π ) |
67 |
|
f1of1 |
β’ ( π : ( 1 ... ( π + 1 ) ) β1-1-ontoβ π β π : ( 1 ... ( π + 1 ) ) β1-1β π ) |
68 |
66 67
|
syl |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π : ( 1 ... ( π + 1 ) ) β1-1β π ) |
69 |
|
simplrr |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π β π΄ ) |
70 |
|
f1ss |
β’ ( ( π : ( 1 ... ( π + 1 ) ) β1-1β π β§ π β π΄ ) β π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) |
71 |
68 69 70
|
syl2anc |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π : ( 1 ... ( π + 1 ) ) β1-1β π΄ ) |
72 |
|
simpr |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) |
73 |
|
f1ofo |
β’ ( π : ( 1 ... ( β― β π ) ) β1-1-ontoβ π β π : ( 1 ... ( β― β π ) ) βontoβ π ) |
74 |
|
forn |
β’ ( π : ( 1 ... ( β― β π ) ) βontoβ π β ran π = π ) |
75 |
|
isoeq5 |
β’ ( ran π = π β ( π Isom < , < ( ( 1 ... ( β― β π ) ) , ran π ) β π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) ) |
76 |
57 73 74 75
|
4syl |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( π Isom < , < ( ( 1 ... ( β― β π ) ) , ran π ) β π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) ) |
77 |
72 76
|
mpbird |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π Isom < , < ( ( 1 ... ( β― β π ) ) , ran π ) ) |
78 |
|
isoeq4 |
β’ ( ( 1 ... ( β― β π ) ) = ( 1 ... ( π + 1 ) ) β ( π Isom < , < ( ( 1 ... ( β― β π ) ) , ran π ) β π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) |
79 |
64 78
|
syl |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( π Isom < , < ( ( 1 ... ( β― β π ) ) , ran π ) β π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) |
80 |
77 79
|
mpbid |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) |
81 |
71 80
|
jca |
β’ ( ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β§ π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) ) β ( π : ( 1 ... ( π + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) |
82 |
81
|
ex |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) β ( π : ( 1 ... ( π + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) ) |
83 |
82
|
eximdv |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β ( β π π Isom < , < ( ( 1 ... ( β― β π ) ) , π ) β β π ( π : ( 1 ... ( π + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) ) |
84 |
55 83
|
mpd |
β’ ( ( π β§ ( ( 1 ... ( π + 1 ) ) β π β§ π β π΄ ) ) β β π ( π : ( 1 ... ( π + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) |
85 |
42 84
|
exlimddv |
β’ ( π β β π ( π : ( 1 ... ( π + 1 ) ) β1-1β π΄ β§ π Isom < , < ( ( 1 ... ( π + 1 ) ) , ran π ) ) ) |