Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze2.r |
|
2 |
|
erdsze2.s |
|
3 |
|
erdsze2.f |
|
4 |
|
erdsze2.a |
|
5 |
|
erdsze2lem.n |
|
6 |
|
erdsze2lem.l |
|
7 |
|
nnm1nn0 |
|
8 |
1 7
|
syl |
|
9 |
|
nnm1nn0 |
|
10 |
2 9
|
syl |
|
11 |
8 10
|
nn0mulcld |
|
12 |
5 11
|
eqeltrid |
|
13 |
|
peano2nn0 |
|
14 |
|
hashfz1 |
|
15 |
12 13 14
|
3syl |
|
16 |
15
|
adantr |
|
17 |
6
|
adantr |
|
18 |
|
hashcl |
|
19 |
|
nn0ltp1le |
|
20 |
12 18 19
|
syl2an |
|
21 |
17 20
|
mpbid |
|
22 |
16 21
|
eqbrtrd |
|
23 |
|
fzfid |
|
24 |
|
simpr |
|
25 |
|
hashdom |
|
26 |
23 24 25
|
syl2anc |
|
27 |
22 26
|
mpbid |
|
28 |
|
simpr |
|
29 |
|
fzfid |
|
30 |
|
isinffi |
|
31 |
28 29 30
|
syl2anc |
|
32 |
|
reex |
|
33 |
|
ssexg |
|
34 |
4 32 33
|
sylancl |
|
35 |
34
|
adantr |
|
36 |
|
brdomg |
|
37 |
35 36
|
syl |
|
38 |
31 37
|
mpbird |
|
39 |
27 38
|
pm2.61dan |
|
40 |
|
domeng |
|
41 |
34 40
|
syl |
|
42 |
39 41
|
mpbid |
|
43 |
|
simprr |
|
44 |
4
|
adantr |
|
45 |
43 44
|
sstrd |
|
46 |
|
ltso |
|
47 |
|
soss |
|
48 |
45 46 47
|
mpisyl |
|
49 |
|
fzfid |
|
50 |
|
simprl |
|
51 |
|
enfi |
|
52 |
50 51
|
syl |
|
53 |
49 52
|
mpbid |
|
54 |
|
fz1iso |
|
55 |
48 53 54
|
syl2anc |
|
56 |
|
isof1o |
|
57 |
56
|
adantl |
|
58 |
|
hashen |
|
59 |
49 53 58
|
syl2anc |
|
60 |
50 59
|
mpbird |
|
61 |
15
|
adantr |
|
62 |
60 61
|
eqtr3d |
|
63 |
62
|
adantr |
|
64 |
63
|
oveq2d |
|
65 |
64
|
f1oeq2d |
|
66 |
57 65
|
mpbid |
|
67 |
|
f1of1 |
|
68 |
66 67
|
syl |
|
69 |
|
simplrr |
|
70 |
|
f1ss |
|
71 |
68 69 70
|
syl2anc |
|
72 |
|
simpr |
|
73 |
|
f1ofo |
|
74 |
|
forn |
|
75 |
|
isoeq5 |
|
76 |
57 73 74 75
|
4syl |
|
77 |
72 76
|
mpbird |
|
78 |
|
isoeq4 |
|
79 |
64 78
|
syl |
|
80 |
77 79
|
mpbid |
|
81 |
71 80
|
jca |
|
82 |
81
|
ex |
|
83 |
82
|
eximdv |
|
84 |
55 83
|
mpd |
|
85 |
42 84
|
exlimddv |
|