Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h-r |
|- H = ( LHyp ` K ) |
2 |
|
ernggrp.d-r |
|- D = ( ( EDRingR ` K ) ` W ) |
3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
4 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
5 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
6 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` f ) o. ( b ` f ) ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` f ) o. ( b ` f ) ) ) ) |
7 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
8 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` f ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` f ) ) ) |
9 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( b o. a ) ) = ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( b o. a ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3-rN |
|- ( ( K e. HL /\ W e. H ) -> D e. Ring ) |