Metamath Proof Explorer


Theorem erngring-rN

Description: An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ernggrp.h-r 𝐻 = ( LHyp ‘ 𝐾 )
ernggrp.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
Assertion erngring-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Ring )

Proof

Step Hyp Ref Expression
1 ernggrp.h-r 𝐻 = ( LHyp ‘ 𝐾 )
2 ernggrp.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) )
7 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
8 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑓 ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑓 ) ) )
9 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑏𝑎 ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑏𝑎 ) )
10 1 2 3 4 5 6 7 8 9 erngdvlem3-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Ring )