Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ernggrp.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
7 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑏 ∘ 𝑎 ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑏 ∘ 𝑎 ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |