Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ernggrp.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
ernggrplem.b-r |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
ernggrplem.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
ernggrplem.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
ernggrplem.p-r |
⊢ 𝑃 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
7 |
|
ernggrplem.o-r |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
ernggrplem.i-r |
⊢ 𝐼 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
9 |
|
erngrnglem.m-r |
⊢ 𝑀 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
11 |
1 4 5 2 10
|
erngbase-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
14 |
1 4 5 2 13
|
erngfplus-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) ) |
15 |
6 14
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑃 = ( +g ‘ 𝐷 ) ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
17 |
1 4 5 2 16
|
erngfmul-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) ) |
18 |
9 17
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
19 |
1 2 3 4 5 6 7 8
|
erngdvlem1-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Grp ) |
20 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
22 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
23 |
22
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
24 |
21 23
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
25 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
26 |
25
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
27 |
24 26
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ) |
28 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) = ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) ) |
29 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
30 |
29
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
31 |
28 30
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
32 |
31
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) = ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) ) |
33 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) ) |
35 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
36 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑠 ∈ 𝐸 ) |
37 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑢 ∈ 𝐸 ) |
38 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑡 ∈ 𝐸 ) |
39 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑢 ∘ 𝑡 ) ∈ 𝐸 ) |
40 |
35 37 38 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ 𝑡 ) ∈ 𝐸 ) |
41 |
31 40
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) ∈ 𝐸 ) |
42 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 𝑀 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
43 |
35 36 41 42
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
44 |
34 43
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
45 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
47 |
27
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ) |
48 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) ) |
49 |
35 47 37 48
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) ) |
50 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
51 |
22
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
52 |
50 51
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
53 |
52
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) ) |
54 |
46 49 53
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) ) |
55 |
|
coass |
⊢ ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) |
56 |
54 55
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) ) |
57 |
32 44 56
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) ) |
58 |
1 4 5 6
|
tendodi2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
59 |
35 38 37 36 58
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
60 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
62 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
63 |
35 38 37 62
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
64 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
65 |
35 36 63 64
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
66 |
61 65
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
67 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑢 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) ) |
68 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
69 |
68
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
70 |
67 69
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
71 |
52 70
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑃 ( 𝑠 𝑀 𝑢 ) ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
72 |
59 66 71
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑠 𝑀 𝑡 ) 𝑃 ( 𝑠 𝑀 𝑢 ) ) ) |
73 |
1 4 5 6
|
tendodi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑢 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
74 |
35 37 36 38 73
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
75 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
76 |
75
|
oveqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
77 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
78 |
77
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
79 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
80 |
35 78 37 79
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
81 |
76 80
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
82 |
70 31
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑢 ) 𝑃 ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
83 |
74 81 82
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑢 ) 𝑃 ( 𝑡 𝑀 𝑢 ) ) ) |
84 |
1 4 5
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
85 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
86 |
85
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
87 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
88 |
84
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
89 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → 𝑠 ∈ 𝐸 ) |
90 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
91 |
87 88 89 90
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
92 |
1 4 5
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ∘ ( I ↾ 𝑇 ) ) = 𝑠 ) |
93 |
86 91 92
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = 𝑠 ) |
94 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
96 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
97 |
87 89 88 96
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
98 |
1 4 5
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑠 ) = 𝑠 ) |
99 |
95 97 98
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = 𝑠 ) |
100 |
12 15 18 19 27 57 72 83 84 93 99
|
isringd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |