| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ernggrp.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
ernggrp.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
ernggrplem.b-r |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 4 |
|
ernggrplem.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
ernggrplem.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
ernggrplem.p-r |
⊢ 𝑃 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
| 7 |
|
ernggrplem.o-r |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 8 |
|
ernggrplem.i-r |
⊢ 𝐼 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
| 9 |
|
erngrnglem.m-r |
⊢ 𝑀 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 11 |
1 4 5 2 10
|
erngbase-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
| 14 |
1 4 5 2 13
|
erngfplus-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) ) |
| 15 |
6 14
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑃 = ( +g ‘ 𝐷 ) ) |
| 16 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
| 17 |
1 4 5 2 16
|
erngfmul-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) ) |
| 18 |
9 17
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
| 19 |
1 2 3 4 5 6 7 8
|
erngdvlem1-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Grp ) |
| 20 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
| 22 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
| 23 |
22
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
| 24 |
21 23
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
| 25 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
| 26 |
25
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
| 27 |
24 26
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ) |
| 28 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) = ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) ) |
| 29 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
| 30 |
29
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
| 31 |
28 30
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) = ( 𝑢 ∘ 𝑡 ) ) |
| 32 |
31
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) = ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) ) |
| 33 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) ) |
| 35 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 36 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑠 ∈ 𝐸 ) |
| 37 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑢 ∈ 𝐸 ) |
| 38 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑡 ∈ 𝐸 ) |
| 39 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑢 ∘ 𝑡 ) ∈ 𝐸 ) |
| 40 |
35 37 38 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ 𝑡 ) ∈ 𝐸 ) |
| 41 |
31 40
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑀 𝑢 ) ∈ 𝐸 ) |
| 42 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 𝑀 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
| 43 |
35 36 41 42
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
| 44 |
34 43
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑡 𝑀 𝑢 ) ∘ 𝑠 ) ) |
| 45 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
| 47 |
27
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ) |
| 48 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 𝑀 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) ) |
| 49 |
35 47 37 48
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) ) |
| 50 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
| 51 |
22
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
| 52 |
50 51
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
| 53 |
52
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑀 𝑡 ) ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) ) |
| 54 |
46 49 53
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) ) |
| 55 |
|
coass |
⊢ ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) = ( 𝑢 ∘ ( 𝑡 ∘ 𝑠 ) ) |
| 56 |
54 55
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑢 ∘ 𝑡 ) ∘ 𝑠 ) ) |
| 57 |
32 44 56
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑀 𝑢 ) = ( 𝑠 𝑀 ( 𝑡 𝑀 𝑢 ) ) ) |
| 58 |
1 4 5 6
|
tendodi2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
| 59 |
35 38 37 36 58
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
| 60 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
| 62 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
| 63 |
35 38 37 62
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
| 64 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
| 65 |
35 36 63 64
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
| 66 |
61 65
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑡 𝑃 𝑢 ) ∘ 𝑠 ) ) |
| 67 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑢 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) ) |
| 68 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
| 69 |
68
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 𝑢 ) = ( 𝑢 ∘ 𝑠 ) ) |
| 71 |
52 70
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑡 ) 𝑃 ( 𝑠 𝑀 𝑢 ) ) = ( ( 𝑡 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑠 ) ) ) |
| 72 |
59 66 71
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑀 ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑠 𝑀 𝑡 ) 𝑃 ( 𝑠 𝑀 𝑢 ) ) ) |
| 73 |
1 4 5 6
|
tendodi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑢 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
| 74 |
35 37 36 38 73
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
| 75 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
| 76 |
75
|
oveqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
| 77 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
| 78 |
77
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
| 79 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
| 80 |
35 78 37 79
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
| 81 |
76 80
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( 𝑢 ∘ ( 𝑠 𝑃 𝑡 ) ) ) |
| 82 |
70 31
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑀 𝑢 ) 𝑃 ( 𝑡 𝑀 𝑢 ) ) = ( ( 𝑢 ∘ 𝑠 ) 𝑃 ( 𝑢 ∘ 𝑡 ) ) ) |
| 83 |
74 81 82
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) 𝑀 𝑢 ) = ( ( 𝑠 𝑀 𝑢 ) 𝑃 ( 𝑡 𝑀 𝑢 ) ) ) |
| 84 |
1 4 5
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
| 85 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
| 87 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 88 |
84
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
| 89 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → 𝑠 ∈ 𝐸 ) |
| 90 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
| 91 |
87 88 89 90
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
| 92 |
1 4 5
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ∘ ( I ↾ 𝑇 ) ) = 𝑠 ) |
| 93 |
86 91 92
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) 𝑀 𝑠 ) = 𝑠 ) |
| 94 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
| 96 |
1 4 5 2 16
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
| 97 |
87 89 88 96
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
| 98 |
1 4 5
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑠 ) = 𝑠 ) |
| 99 |
95 97 98
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 𝑀 ( I ↾ 𝑇 ) ) = 𝑠 ) |
| 100 |
12 15 18 19 27 57 72 83 84 93 99
|
isringd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |