Metamath Proof Explorer


Theorem erngmul-rN

Description: Ring addition operation. (Contributed by NM, 10-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r 𝐻 = ( LHyp ‘ 𝐾 )
erngset.t-r 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
erngset.e-r 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
erngset.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
erng.m-r · = ( .r𝐷 )
Assertion erngmul-rN ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 · 𝑉 ) = ( 𝑉𝑈 ) )

Proof

Step Hyp Ref Expression
1 erngset.h-r 𝐻 = ( LHyp ‘ 𝐾 )
2 erngset.t-r 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 erngset.e-r 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 erngset.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
5 erng.m-r · = ( .r𝐷 )
6 1 2 3 4 5 erngfmul-rN ( ( 𝐾𝑋𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) )
7 6 adantr ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → · = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) )
8 7 oveqd ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 · 𝑉 ) = ( 𝑈 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) 𝑉 ) )
9 coexg ( ( 𝑉𝐸𝑈𝐸 ) → ( 𝑉𝑈 ) ∈ V )
10 9 ancoms ( ( 𝑈𝐸𝑉𝐸 ) → ( 𝑉𝑈 ) ∈ V )
11 coeq2 ( 𝑠 = 𝑈 → ( 𝑡𝑠 ) = ( 𝑡𝑈 ) )
12 coeq1 ( 𝑡 = 𝑉 → ( 𝑡𝑈 ) = ( 𝑉𝑈 ) )
13 eqid ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) )
14 11 12 13 ovmpog ( ( 𝑈𝐸𝑉𝐸 ∧ ( 𝑉𝑈 ) ∈ V ) → ( 𝑈 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) 𝑉 ) = ( 𝑉𝑈 ) )
15 10 14 mpd3an3 ( ( 𝑈𝐸𝑉𝐸 ) → ( 𝑈 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) 𝑉 ) = ( 𝑉𝑈 ) )
16 15 adantl ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑡𝑠 ) ) 𝑉 ) = ( 𝑉𝑈 ) )
17 8 16 eqtrd ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ) → ( 𝑈 · 𝑉 ) = ( 𝑉𝑈 ) )