| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erngset.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
erngset.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
erngset.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
erngset.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
erng.m-r |
⊢ · = ( .r ‘ 𝐷 ) |
| 6 |
1 2 3 4 5
|
erngfmul-rN |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → · = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → · = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) ) |
| 8 |
7
|
oveqd |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 · 𝑉 ) = ( 𝑈 ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 𝑉 ) ) |
| 9 |
|
coexg |
⊢ ( ( 𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ) → ( 𝑉 ∘ 𝑈 ) ∈ V ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) → ( 𝑉 ∘ 𝑈 ) ∈ V ) |
| 11 |
|
coeq2 |
⊢ ( 𝑠 = 𝑈 → ( 𝑡 ∘ 𝑠 ) = ( 𝑡 ∘ 𝑈 ) ) |
| 12 |
|
coeq1 |
⊢ ( 𝑡 = 𝑉 → ( 𝑡 ∘ 𝑈 ) = ( 𝑉 ∘ 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) |
| 14 |
11 12 13
|
ovmpog |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑉 ∘ 𝑈 ) ∈ V ) → ( 𝑈 ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 𝑉 ) = ( 𝑉 ∘ 𝑈 ) ) |
| 15 |
10 14
|
mpd3an3 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) → ( 𝑈 ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 𝑉 ) = ( 𝑉 ∘ 𝑈 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 𝑉 ) = ( 𝑉 ∘ 𝑈 ) ) |
| 17 |
8 16
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 · 𝑉 ) = ( 𝑉 ∘ 𝑈 ) ) |