Metamath Proof Explorer


Theorem erngdvlem4-rN

Description: Lemma for erngdv . (Contributed by NM, 11-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ernggrp.h-r 𝐻 = ( LHyp ‘ 𝐾 )
ernggrp.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
ernggrplem.b-r 𝐵 = ( Base ‘ 𝐾 )
ernggrplem.t-r 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
ernggrplem.e-r 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
ernggrplem.p-r 𝑃 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) )
ernggrplem.o-r 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
ernggrplem.i-r 𝐼 = ( 𝑎𝐸 ↦ ( 𝑓𝑇 ( 𝑎𝑓 ) ) )
erngrnglem.m-r 𝑀 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑏𝑎 ) )
edlemk6.j-r = ( join ‘ 𝐾 )
edlemk6.m-r = ( meet ‘ 𝐾 )
edlemk6.r-r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
edlemk6.p-r 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
edlemk6.z-r 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
edlemk6.y-r 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
edlemk6.x-r 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
edlemk6.u-r 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
Assertion erngdvlem4-rN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 ernggrp.h-r 𝐻 = ( LHyp ‘ 𝐾 )
2 ernggrp.d-r 𝐷 = ( ( EDRingR𝐾 ) ‘ 𝑊 )
3 ernggrplem.b-r 𝐵 = ( Base ‘ 𝐾 )
4 ernggrplem.t-r 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 ernggrplem.e-r 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 ernggrplem.p-r 𝑃 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) )
7 ernggrplem.o-r 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
8 ernggrplem.i-r 𝐼 = ( 𝑎𝐸 ↦ ( 𝑓𝑇 ( 𝑎𝑓 ) ) )
9 erngrnglem.m-r 𝑀 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑏𝑎 ) )
10 edlemk6.j-r = ( join ‘ 𝐾 )
11 edlemk6.m-r = ( meet ‘ 𝐾 )
12 edlemk6.r-r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 edlemk6.p-r 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
14 edlemk6.z-r 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
15 edlemk6.y-r 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
16 edlemk6.x-r 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
17 edlemk6.u-r 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
18 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
19 1 4 5 2 18 erngbase-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 )
20 19 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) )
21 20 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝐸 = ( Base ‘ 𝐷 ) )
22 eqid ( .r𝐷 ) = ( .r𝐷 )
23 1 4 5 2 22 erngfmul-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( .r𝐷 ) = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑏𝑎 ) ) )
24 9 23 eqtr4id ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑀 = ( .r𝐷 ) )
25 24 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝑀 = ( .r𝐷 ) )
26 3 1 4 5 7 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑂𝐸 )
27 26 19 eleqtrrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑂 ∈ ( Base ‘ 𝐷 ) )
28 eqid ( +g𝐷 ) = ( +g𝐷 )
29 1 4 5 2 28 erngfplus-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( +g𝐷 ) = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) ) )
30 6 29 eqtr4id ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑃 = ( +g𝐷 ) )
31 30 oveqd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑂 𝑃 𝑂 ) = ( 𝑂 ( +g𝐷 ) 𝑂 ) )
32 3 1 4 5 7 6 tendo0pl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑂𝐸 ) → ( 𝑂 𝑃 𝑂 ) = 𝑂 )
33 26 32 mpdan ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑂 𝑃 𝑂 ) = 𝑂 )
34 31 33 eqtr3d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑂 ( +g𝐷 ) 𝑂 ) = 𝑂 )
35 1 2 3 4 5 6 7 8 erngdvlem1-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Grp )
36 eqid ( 0g𝐷 ) = ( 0g𝐷 )
37 18 28 36 isgrpid2 ( 𝐷 ∈ Grp → ( ( 𝑂 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝑂 ( +g𝐷 ) 𝑂 ) = 𝑂 ) ↔ ( 0g𝐷 ) = 𝑂 ) )
38 35 37 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( 𝑂 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝑂 ( +g𝐷 ) 𝑂 ) = 𝑂 ) ↔ ( 0g𝐷 ) = 𝑂 ) )
39 27 34 38 mpbi2and ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0g𝐷 ) = 𝑂 )
40 39 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑂 = ( 0g𝐷 ) )
41 40 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝑂 = ( 0g𝐷 ) )
42 1 4 5 tendoidcl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
43 42 19 eleqtrrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) )
44 19 eleq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) ↔ 𝑢𝐸 ) )
45 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
46 42 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
47 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → 𝑢𝐸 )
48 1 4 5 2 22 erngmul-rN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸𝑢𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) )
49 45 46 47 48 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) )
50 1 4 5 tendo1mulr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( 𝑢 ∘ ( I ↾ 𝑇 ) ) = 𝑢 )
51 49 50 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 )
52 1 4 5 2 22 erngmul-rN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑢𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) )
53 45 47 46 52 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) )
54 1 4 5 tendo1mul ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑢 ) = 𝑢 )
55 53 54 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 )
56 51 55 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑢𝐸 ) → ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) )
57 56 ex ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑢𝐸 → ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) )
58 44 57 sylbid ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) → ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) )
59 58 ralrimiv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) )
60 1 2 3 4 5 6 7 8 9 erngdvlem3-rN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Ring )
61 eqid ( 1r𝐷 ) = ( 1r𝐷 )
62 18 22 61 isringid ( 𝐷 ∈ Ring → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r𝐷 ) = ( I ↾ 𝑇 ) ) )
63 60 62 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r𝐷 ) = ( I ↾ 𝑇 ) ) )
64 43 59 63 mpbi2and ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 1r𝐷 ) = ( I ↾ 𝑇 ) )
65 64 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) = ( 1r𝐷 ) )
66 65 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) = ( 1r𝐷 ) )
67 60 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ Ring )
68 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
69 24 oveqd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r𝐷 ) 𝑡 ) )
70 68 69 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r𝐷 ) 𝑡 ) )
71 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → 𝑠𝐸 )
72 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → 𝑡𝐸 )
73 1 4 5 2 22 erngmul-rN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐸𝑡𝐸 ) ) → ( 𝑠 ( .r𝐷 ) 𝑡 ) = ( 𝑡𝑠 ) )
74 68 71 72 73 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑠 ( .r𝐷 ) 𝑡 ) = ( 𝑡𝑠 ) )
75 70 74 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡𝑠 ) )
76 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑡𝐸𝑡𝑂 ) )
77 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑠𝐸𝑠𝑂 ) )
78 3 1 4 5 7 tendoconid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑡𝑠 ) ≠ 𝑂 )
79 68 76 77 78 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑡𝑠 ) ≠ 𝑂 )
80 75 79 eqnetrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝑡𝐸𝑡𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) ≠ 𝑂 )
81 3 1 4 5 7 tendo1ne0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ≠ 𝑂 )
82 81 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) ≠ 𝑂 )
83 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
84 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑇 )
85 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑠𝐸𝑠𝑂 ) )
86 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑇 ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑈𝐸 ∧ ( 𝑈 ‘ ( 𝑠 ) ) = ) )
87 86 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑇 ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑈𝐸 )
88 83 84 85 87 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑈𝐸 )
89 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑈𝑂 )
90 89 3expa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑈𝑂 )
91 24 oveqd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑠 𝑀 𝑈 ) = ( 𝑠 ( .r𝐷 ) 𝑈 ) )
92 91 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑠 𝑀 𝑈 ) = ( 𝑠 ( .r𝐷 ) 𝑈 ) )
93 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → 𝑠𝐸 )
94 1 4 5 2 22 erngmul-rN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐸𝑈𝐸 ) ) → ( 𝑠 ( .r𝐷 ) 𝑈 ) = ( 𝑈𝑠 ) )
95 83 93 88 94 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑠 ( .r𝐷 ) 𝑈 ) = ( 𝑈𝑠 ) )
96 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )
97 96 3expa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )
98 95 97 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑠 ( .r𝐷 ) 𝑈 ) = ( I ↾ 𝑇 ) )
99 92 98 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠𝐸𝑠𝑂 ) ) → ( 𝑠 𝑀 𝑈 ) = ( I ↾ 𝑇 ) )
100 21 25 41 66 67 80 82 88 90 99 isdrngrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ DivRing )