Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ernggrp.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
ernggrplem.b-r |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
ernggrplem.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
ernggrplem.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
ernggrplem.p-r |
⊢ 𝑃 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
7 |
|
ernggrplem.o-r |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
ernggrplem.i-r |
⊢ 𝐼 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
9 |
|
erngrnglem.m-r |
⊢ 𝑀 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) |
10 |
|
edlemk6.j-r |
⊢ ∨ = ( join ‘ 𝐾 ) |
11 |
|
edlemk6.m-r |
⊢ ∧ = ( meet ‘ 𝐾 ) |
12 |
|
edlemk6.r-r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
edlemk6.p-r |
⊢ 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
edlemk6.z-r |
⊢ 𝑍 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( ℎ ‘ 𝑄 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ ( 𝑠 ‘ ℎ ) ) ) ) ) |
15 |
|
edlemk6.y-r |
⊢ 𝑌 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
16 |
|
edlemk6.x-r |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ‘ ℎ ) ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑄 ) = 𝑌 ) ) |
17 |
|
edlemk6.u-r |
⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( ( 𝑠 ‘ ℎ ) = ℎ , 𝑔 , 𝑋 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
19 |
1 4 5 2 18
|
erngbase-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
23 |
1 4 5 2 22
|
erngfmul-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑏 ∘ 𝑎 ) ) ) |
24 |
9 23
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝑀 = ( .r ‘ 𝐷 ) ) |
26 |
3 1 4 5 7
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
27 |
26 19
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ ( Base ‘ 𝐷 ) ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
29 |
1 4 5 2 28
|
erngfplus-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) ) |
30 |
6 29
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑃 = ( +g ‘ 𝐷 ) ) |
31 |
30
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 𝑃 𝑂 ) = ( 𝑂 ( +g ‘ 𝐷 ) 𝑂 ) ) |
32 |
3 1 4 5 7 6
|
tendo0pl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑂 ∈ 𝐸 ) → ( 𝑂 𝑃 𝑂 ) = 𝑂 ) |
33 |
26 32
|
mpdan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 𝑃 𝑂 ) = 𝑂 ) |
34 |
31 33
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ( +g ‘ 𝐷 ) 𝑂 ) = 𝑂 ) |
35 |
1 2 3 4 5 6 7 8
|
erngdvlem1-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Grp ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
37 |
18 28 36
|
isgrpid2 |
⊢ ( 𝐷 ∈ Grp → ( ( 𝑂 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝑂 ( +g ‘ 𝐷 ) 𝑂 ) = 𝑂 ) ↔ ( 0g ‘ 𝐷 ) = 𝑂 ) ) |
38 |
35 37
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑂 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝑂 ( +g ‘ 𝐷 ) 𝑂 ) = 𝑂 ) ↔ ( 0g ‘ 𝐷 ) = 𝑂 ) ) |
39 |
27 34 38
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐷 ) = 𝑂 ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 = ( 0g ‘ 𝐷 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝑂 = ( 0g ‘ 𝐷 ) ) |
42 |
1 4 5
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
43 |
42 19
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ) |
44 |
19
|
eleq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) ↔ 𝑢 ∈ 𝐸 ) ) |
45 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
46 |
42
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
47 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → 𝑢 ∈ 𝐸 ) |
48 |
1 4 5 2 22
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
49 |
45 46 47 48
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
50 |
1 4 5
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ∘ ( I ↾ 𝑇 ) ) = 𝑢 ) |
51 |
49 50
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ) |
52 |
1 4 5 2 22
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
53 |
45 47 46 52
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
54 |
1 4 5
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑢 ) = 𝑢 ) |
55 |
53 54
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) |
56 |
51 55
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
57 |
56
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ 𝐸 → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
58 |
44 57
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
59 |
58
|
ralrimiv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
60 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3-rN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |
61 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
62 |
18 22 61
|
isringid |
⊢ ( 𝐷 ∈ Ring → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
63 |
60 62
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
64 |
43 59 63
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) |
65 |
64
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) = ( 1r ‘ 𝐷 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) = ( 1r ‘ 𝐷 ) ) |
67 |
60
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ Ring ) |
68 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
69 |
24
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
71 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → 𝑠 ∈ 𝐸 ) |
72 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → 𝑡 ∈ 𝐸 ) |
73 |
1 4 5 2 22
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
74 |
68 71 72 73
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
75 |
70 74
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) = ( 𝑡 ∘ 𝑠 ) ) |
76 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) |
77 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) |
78 |
3 1 4 5 7
|
tendoconid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑡 ∘ 𝑠 ) ≠ 𝑂 ) |
79 |
68 76 77 78
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑡 ∘ 𝑠 ) ≠ 𝑂 ) |
80 |
75 79
|
eqnetrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂 ) ) → ( 𝑠 𝑀 𝑡 ) ≠ 𝑂 ) |
81 |
3 1 4 5 7
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ 𝑂 ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) ≠ 𝑂 ) |
83 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
84 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ℎ ∈ 𝑇 ) |
85 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) |
86 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑈 ∈ 𝐸 ∧ ( 𝑈 ‘ ( 𝑠 ‘ ℎ ) ) = ℎ ) ) |
87 |
86
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → 𝑈 ∈ 𝐸 ) |
88 |
83 84 85 87
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → 𝑈 ∈ 𝐸 ) |
89 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → 𝑈 ≠ 𝑂 ) |
90 |
89
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → 𝑈 ≠ 𝑂 ) |
91 |
24
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 𝑀 𝑈 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑈 ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑠 𝑀 𝑈 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑈 ) ) |
93 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → 𝑠 ∈ 𝐸 ) |
94 |
1 4 5 2 22
|
erngmul-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑈 ) = ( 𝑈 ∘ 𝑠 ) ) |
95 |
83 93 88 94
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑈 ) = ( 𝑈 ∘ 𝑠 ) ) |
96 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml8 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
97 |
96
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
98 |
95 97
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑈 ) = ( I ↾ 𝑇 ) ) |
99 |
92 98
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ) → ( 𝑠 𝑀 𝑈 ) = ( I ↾ 𝑇 ) ) |
100 |
21 25 41 66 67 80 82 88 90 99
|
isdrngrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ DivRing ) |