Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h-r |
|
2 |
|
ernggrp.d-r |
|
3 |
|
ernggrplem.b-r |
|
4 |
|
ernggrplem.t-r |
|
5 |
|
ernggrplem.e-r |
|
6 |
|
ernggrplem.p-r |
|
7 |
|
ernggrplem.o-r |
|
8 |
|
ernggrplem.i-r |
|
9 |
|
erngrnglem.m-r |
|
10 |
|
edlemk6.j-r |
|
11 |
|
edlemk6.m-r |
|
12 |
|
edlemk6.r-r |
|
13 |
|
edlemk6.p-r |
|
14 |
|
edlemk6.z-r |
|
15 |
|
edlemk6.y-r |
|
16 |
|
edlemk6.x-r |
|
17 |
|
edlemk6.u-r |
|
18 |
|
eqid |
|
19 |
1 4 5 2 18
|
erngbase-rN |
|
20 |
19
|
eqcomd |
|
21 |
20
|
adantr |
|
22 |
|
eqid |
|
23 |
1 4 5 2 22
|
erngfmul-rN |
|
24 |
9 23
|
eqtr4id |
|
25 |
24
|
adantr |
|
26 |
3 1 4 5 7
|
tendo0cl |
|
27 |
26 19
|
eleqtrrd |
|
28 |
|
eqid |
|
29 |
1 4 5 2 28
|
erngfplus-rN |
|
30 |
6 29
|
eqtr4id |
|
31 |
30
|
oveqd |
|
32 |
3 1 4 5 7 6
|
tendo0pl |
|
33 |
26 32
|
mpdan |
|
34 |
31 33
|
eqtr3d |
|
35 |
1 2 3 4 5 6 7 8
|
erngdvlem1-rN |
|
36 |
|
eqid |
|
37 |
18 28 36
|
isgrpid2 |
|
38 |
35 37
|
syl |
|
39 |
27 34 38
|
mpbi2and |
|
40 |
39
|
eqcomd |
|
41 |
40
|
adantr |
|
42 |
1 4 5
|
tendoidcl |
|
43 |
42 19
|
eleqtrrd |
|
44 |
19
|
eleq2d |
|
45 |
|
simpl |
|
46 |
42
|
adantr |
|
47 |
|
simpr |
|
48 |
1 4 5 2 22
|
erngmul-rN |
|
49 |
45 46 47 48
|
syl12anc |
|
50 |
1 4 5
|
tendo1mulr |
|
51 |
49 50
|
eqtrd |
|
52 |
1 4 5 2 22
|
erngmul-rN |
|
53 |
45 47 46 52
|
syl12anc |
|
54 |
1 4 5
|
tendo1mul |
|
55 |
53 54
|
eqtrd |
|
56 |
51 55
|
jca |
|
57 |
56
|
ex |
|
58 |
44 57
|
sylbid |
|
59 |
58
|
ralrimiv |
|
60 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3-rN |
|
61 |
|
eqid |
|
62 |
18 22 61
|
isringid |
|
63 |
60 62
|
syl |
|
64 |
43 59 63
|
mpbi2and |
|
65 |
64
|
eqcomd |
|
66 |
65
|
adantr |
|
67 |
60
|
adantr |
|
68 |
|
simp1l |
|
69 |
24
|
oveqd |
|
70 |
68 69
|
syl |
|
71 |
|
simp2l |
|
72 |
|
simp3l |
|
73 |
1 4 5 2 22
|
erngmul-rN |
|
74 |
68 71 72 73
|
syl12anc |
|
75 |
70 74
|
eqtrd |
|
76 |
|
simp3 |
|
77 |
|
simp2 |
|
78 |
3 1 4 5 7
|
tendoconid |
|
79 |
68 76 77 78
|
syl3anc |
|
80 |
75 79
|
eqnetrd |
|
81 |
3 1 4 5 7
|
tendo1ne0 |
|
82 |
81
|
adantr |
|
83 |
|
simpll |
|
84 |
|
simplrl |
|
85 |
|
simpr |
|
86 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml6 |
|
87 |
86
|
simpld |
|
88 |
83 84 85 87
|
syl3anc |
|
89 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml9 |
|
90 |
89
|
3expa |
|
91 |
24
|
oveqd |
|
92 |
91
|
ad2antrr |
|
93 |
|
simprl |
|
94 |
1 4 5 2 22
|
erngmul-rN |
|
95 |
83 93 88 94
|
syl12anc |
|
96 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml8 |
|
97 |
96
|
3expa |
|
98 |
95 97
|
eqtrd |
|
99 |
92 98
|
eqtrd |
|
100 |
21 25 41 66 67 80 82 88 90 99
|
isdrngrd |
|