Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
erngfplus-rN
Next ⟩
erngplus-rN
Metamath Proof Explorer
Ascii
Unicode
Theorem
erngfplus-rN
Description:
Ring addition operation.
(Contributed by
NM
, 9-Jun-2013)
(New usage is discouraged.)
Ref
Expression
Hypotheses
erngset.h-r
⊢
H
=
LHyp
⁡
K
erngset.t-r
⊢
T
=
LTrn
⁡
K
⁡
W
erngset.e-r
⊢
E
=
TEndo
⁡
K
⁡
W
erngset.d-r
⊢
D
=
EDRing
R
⁡
K
⁡
W
erng.p-r
⊢
+
˙
=
+
D
Assertion
erngfplus-rN
⊢
K
∈
V
∧
W
∈
H
→
+
˙
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
Proof
Step
Hyp
Ref
Expression
1
erngset.h-r
⊢
H
=
LHyp
⁡
K
2
erngset.t-r
⊢
T
=
LTrn
⁡
K
⁡
W
3
erngset.e-r
⊢
E
=
TEndo
⁡
K
⁡
W
4
erngset.d-r
⊢
D
=
EDRing
R
⁡
K
⁡
W
5
erng.p-r
⊢
+
˙
=
+
D
6
1
2
3
4
erngset-rN
⊢
K
∈
V
∧
W
∈
H
→
D
=
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
7
6
fveq2d
⊢
K
∈
V
∧
W
∈
H
→
+
D
=
+
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
8
3
fvexi
⊢
E
∈
V
9
8
8
mpoex
⊢
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
∈
V
10
eqid
⊢
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
=
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
11
10
rngplusg
⊢
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
∈
V
→
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
=
+
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
12
9
11
ax-mp
⊢
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
=
+
Base
ndx
E
+
ndx
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
⋅
ndx
s
∈
E
,
t
∈
E
⟼
t
∘
s
13
7
5
12
3eqtr4g
⊢
K
∈
V
∧
W
∈
H
→
+
˙
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f