Metamath Proof Explorer


Theorem erngring-rN

Description: An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ernggrp.h-r H = LHyp K
ernggrp.d-r D = EDRing R K W
Assertion erngring-rN K HL W H D Ring

Proof

Step Hyp Ref Expression
1 ernggrp.h-r H = LHyp K
2 ernggrp.d-r D = EDRing R K W
3 eqid Base K = Base K
4 eqid LTrn K W = LTrn K W
5 eqid TEndo K W = TEndo K W
6 eqid a TEndo K W , b TEndo K W f LTrn K W a f b f = a TEndo K W , b TEndo K W f LTrn K W a f b f
7 eqid f LTrn K W I Base K = f LTrn K W I Base K
8 eqid a TEndo K W f LTrn K W a f -1 = a TEndo K W f LTrn K W a f -1
9 eqid a TEndo K W , b TEndo K W b a = a TEndo K W , b TEndo K W b a
10 1 2 3 4 5 6 7 8 9 erngdvlem3-rN K HL W H D Ring