Metamath Proof Explorer


Theorem isdrngrd

Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013)

Ref Expression
Hypotheses isdrngd.b φ B = Base R
isdrngd.t φ · ˙ = R
isdrngd.z φ 0 ˙ = 0 R
isdrngd.u φ 1 ˙ = 1 R
isdrngd.r φ R Ring
isdrngd.n φ x B x 0 ˙ y B y 0 ˙ x · ˙ y 0 ˙
isdrngd.o φ 1 ˙ 0 ˙
isdrngd.i φ x B x 0 ˙ I B
isdrngd.j φ x B x 0 ˙ I 0 ˙
isdrngrd.k φ x B x 0 ˙ x · ˙ I = 1 ˙
Assertion isdrngrd φ R DivRing

Proof

Step Hyp Ref Expression
1 isdrngd.b φ B = Base R
2 isdrngd.t φ · ˙ = R
3 isdrngd.z φ 0 ˙ = 0 R
4 isdrngd.u φ 1 ˙ = 1 R
5 isdrngd.r φ R Ring
6 isdrngd.n φ x B x 0 ˙ y B y 0 ˙ x · ˙ y 0 ˙
7 isdrngd.o φ 1 ˙ 0 ˙
8 isdrngd.i φ x B x 0 ˙ I B
9 isdrngd.j φ x B x 0 ˙ I 0 ˙
10 isdrngrd.k φ x B x 0 ˙ x · ˙ I = 1 ˙
11 eqid opp r R = opp r R
12 eqid Base R = Base R
13 11 12 opprbas Base R = Base opp r R
14 1 13 eqtrdi φ B = Base opp r R
15 eqidd φ opp r R = opp r R
16 eqid 0 R = 0 R
17 11 16 oppr0 0 R = 0 opp r R
18 3 17 eqtrdi φ 0 ˙ = 0 opp r R
19 eqid 1 R = 1 R
20 11 19 oppr1 1 R = 1 opp r R
21 4 20 eqtrdi φ 1 ˙ = 1 opp r R
22 11 opprring R Ring opp r R Ring
23 5 22 syl φ opp r R Ring
24 eleq1w y = x y B x B
25 neeq1 y = x y 0 ˙ x 0 ˙
26 24 25 anbi12d y = x y B y 0 ˙ x B x 0 ˙
27 26 3anbi2d y = x φ y B y 0 ˙ z B z 0 ˙ φ x B x 0 ˙ z B z 0 ˙
28 oveq1 y = x y opp r R z = x opp r R z
29 28 neeq1d y = x y opp r R z 0 ˙ x opp r R z 0 ˙
30 27 29 imbi12d y = x φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙ φ x B x 0 ˙ z B z 0 ˙ x opp r R z 0 ˙
31 eleq1w x = z x B z B
32 neeq1 x = z x 0 ˙ z 0 ˙
33 31 32 anbi12d x = z x B x 0 ˙ z B z 0 ˙
34 33 3anbi3d x = z φ y B y 0 ˙ x B x 0 ˙ φ y B y 0 ˙ z B z 0 ˙
35 oveq2 x = z y opp r R x = y opp r R z
36 35 neeq1d x = z y opp r R x 0 ˙ y opp r R z 0 ˙
37 34 36 imbi12d x = z φ y B y 0 ˙ x B x 0 ˙ y opp r R x 0 ˙ φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙
38 2 3ad2ant1 φ x B x 0 ˙ y B y 0 ˙ · ˙ = R
39 38 oveqd φ x B x 0 ˙ y B y 0 ˙ x · ˙ y = x R y
40 eqid R = R
41 eqid opp r R = opp r R
42 12 40 11 41 opprmul y opp r R x = x R y
43 39 42 eqtr4di φ x B x 0 ˙ y B y 0 ˙ x · ˙ y = y opp r R x
44 43 6 eqnetrrd φ x B x 0 ˙ y B y 0 ˙ y opp r R x 0 ˙
45 44 3com23 φ y B y 0 ˙ x B x 0 ˙ y opp r R x 0 ˙
46 37 45 chvarvv φ y B y 0 ˙ z B z 0 ˙ y opp r R z 0 ˙
47 30 46 chvarvv φ x B x 0 ˙ z B z 0 ˙ x opp r R z 0 ˙
48 12 40 11 41 opprmul I opp r R x = x R I
49 2 adantr φ x B x 0 ˙ · ˙ = R
50 49 oveqd φ x B x 0 ˙ x · ˙ I = x R I
51 50 10 eqtr3d φ x B x 0 ˙ x R I = 1 ˙
52 48 51 syl5eq φ x B x 0 ˙ I opp r R x = 1 ˙
53 14 15 18 21 23 47 7 8 9 52 isdrngd φ opp r R DivRing
54 11 opprdrng R DivRing opp r R DivRing
55 53 54 sylibr φ R DivRing