| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdrngdOLD.b |  | 
						
							| 2 |  | isdrngdOLD.t |  | 
						
							| 3 |  | isdrngdOLD.z |  | 
						
							| 4 |  | isdrngdOLD.u |  | 
						
							| 5 |  | isdrngdOLD.r |  | 
						
							| 6 |  | isdrngdOLD.n |  | 
						
							| 7 |  | isdrngdOLD.o |  | 
						
							| 8 |  | isdrngdOLD.i |  | 
						
							| 9 |  | isdrngdOLD.j |  | 
						
							| 10 |  | isdrngdOLD.k |  | 
						
							| 11 |  | difss |  | 
						
							| 12 | 11 1 | sseqtrid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 14 15 | mgpbas |  | 
						
							| 17 | 13 16 | ressbas2 |  | 
						
							| 18 | 12 17 | syl |  | 
						
							| 19 |  | fvex |  | 
						
							| 20 | 1 19 | eqeltrdi |  | 
						
							| 21 |  | difexg |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 14 22 | mgpplusg |  | 
						
							| 24 | 13 23 | ressplusg |  | 
						
							| 25 | 20 21 24 | 3syl |  | 
						
							| 26 | 2 25 | eqtrd |  | 
						
							| 27 |  | eldifsn |  | 
						
							| 28 |  | eldifsn |  | 
						
							| 29 | 15 22 | ringcl |  | 
						
							| 30 | 5 29 | syl3an1 |  | 
						
							| 31 | 30 | 3expib |  | 
						
							| 32 | 1 | eleq2d |  | 
						
							| 33 | 1 | eleq2d |  | 
						
							| 34 | 32 33 | anbi12d |  | 
						
							| 35 | 2 | oveqd |  | 
						
							| 36 | 35 1 | eleq12d |  | 
						
							| 37 | 31 34 36 | 3imtr4d |  | 
						
							| 38 | 37 | 3impib |  | 
						
							| 39 | 38 | 3adant2r |  | 
						
							| 40 | 39 | 3adant3r |  | 
						
							| 41 |  | eldifsn |  | 
						
							| 42 | 40 6 41 | sylanbrc |  | 
						
							| 43 | 28 42 | syl3an3b |  | 
						
							| 44 | 27 43 | syl3an2b |  | 
						
							| 45 | 15 22 | ringass |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 5 46 | syl |  | 
						
							| 48 | 1 | eleq2d |  | 
						
							| 49 | 32 33 48 | 3anbi123d |  | 
						
							| 50 |  | eqidd |  | 
						
							| 51 | 2 35 50 | oveq123d |  | 
						
							| 52 |  | eqidd |  | 
						
							| 53 | 2 | oveqd |  | 
						
							| 54 | 2 52 53 | oveq123d |  | 
						
							| 55 | 51 54 | eqeq12d |  | 
						
							| 56 | 47 49 55 | 3imtr4d |  | 
						
							| 57 |  | eldifi |  | 
						
							| 58 |  | eldifi |  | 
						
							| 59 |  | eldifi |  | 
						
							| 60 | 57 58 59 | 3anim123i |  | 
						
							| 61 | 56 60 | impel |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 | 15 62 | ringidcl |  | 
						
							| 64 | 5 63 | syl |  | 
						
							| 65 | 64 4 1 | 3eltr4d |  | 
						
							| 66 |  | eldifsn |  | 
						
							| 67 | 65 7 66 | sylanbrc |  | 
						
							| 68 | 15 22 62 | ringlidm |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 5 69 | syl |  | 
						
							| 71 | 2 4 52 | oveq123d |  | 
						
							| 72 | 71 | eqeq1d |  | 
						
							| 73 | 70 32 72 | 3imtr4d |  | 
						
							| 74 | 73 | imp |  | 
						
							| 75 | 74 | adantrr |  | 
						
							| 76 | 27 75 | sylan2b |  | 
						
							| 77 |  | eldifsn |  | 
						
							| 78 | 8 9 77 | sylanbrc |  | 
						
							| 79 | 27 78 | sylan2b |  | 
						
							| 80 | 27 10 | sylan2b |  | 
						
							| 81 | 18 26 44 61 67 76 79 80 | isgrpd |  | 
						
							| 82 | 3 | sneqd |  | 
						
							| 83 | 1 82 | difeq12d |  | 
						
							| 84 | 83 | oveq2d |  | 
						
							| 85 | 84 | eleq1d |  | 
						
							| 86 | 85 | anbi2d |  | 
						
							| 87 | 5 81 86 | mpbi2and |  | 
						
							| 88 |  | eqid |  | 
						
							| 89 |  | eqid |  | 
						
							| 90 | 15 88 89 | isdrng2 |  | 
						
							| 91 | 87 90 | sylibr |  |