| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucalgval.1 |  |-  E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) ) | 
						
							| 2 |  | simpr |  |-  ( ( x = M /\ y = N ) -> y = N ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( ( x = M /\ y = N ) -> ( y = 0 <-> N = 0 ) ) | 
						
							| 4 |  | opeq12 |  |-  ( ( x = M /\ y = N ) -> <. x , y >. = <. M , N >. ) | 
						
							| 5 |  | oveq12 |  |-  ( ( x = M /\ y = N ) -> ( x mod y ) = ( M mod N ) ) | 
						
							| 6 | 2 5 | opeq12d |  |-  ( ( x = M /\ y = N ) -> <. y , ( x mod y ) >. = <. N , ( M mod N ) >. ) | 
						
							| 7 | 3 4 6 | ifbieq12d |  |-  ( ( x = M /\ y = N ) -> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) = if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) ) | 
						
							| 8 |  | opex |  |-  <. M , N >. e. _V | 
						
							| 9 |  | opex |  |-  <. N , ( M mod N ) >. e. _V | 
						
							| 10 | 8 9 | ifex |  |-  if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) e. _V | 
						
							| 11 | 7 1 10 | ovmpoa |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M E N ) = if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) ) |