| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r |  |-  R = { f | ( `' f " NN ) e. Fin } | 
						
							| 2 |  | eulerpartlems.s |  |-  S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) | 
						
							| 3 |  | inss1 |  |-  ( ( NN0 ^m NN ) i^i R ) C_ ( NN0 ^m NN ) | 
						
							| 4 | 3 | sseli |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. ( NN0 ^m NN ) ) | 
						
							| 5 |  | elmapi |  |-  ( A e. ( NN0 ^m NN ) -> A : NN --> NN0 ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) | 
						
							| 7 |  | inss2 |  |-  ( ( NN0 ^m NN ) i^i R ) C_ R | 
						
							| 8 | 7 | sseli |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. R ) | 
						
							| 9 |  | cnveq |  |-  ( f = A -> `' f = `' A ) | 
						
							| 10 | 9 | imaeq1d |  |-  ( f = A -> ( `' f " NN ) = ( `' A " NN ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) ) | 
						
							| 12 | 11 1 | elab2g |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A e. R <-> ( `' A " NN ) e. Fin ) ) | 
						
							| 13 | 8 12 | mpbid |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( `' A " NN ) e. Fin ) | 
						
							| 14 | 6 13 | jca |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) |