| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
| 3 |
|
inss1 |
⊢ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ⊆ ( ℕ0 ↑m ℕ ) |
| 4 |
3
|
sseli |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
| 5 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
| 7 |
|
inss2 |
⊢ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ⊆ 𝑅 |
| 8 |
7
|
sseli |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 ∈ 𝑅 ) |
| 9 |
|
cnveq |
⊢ ( 𝑓 = 𝐴 → ◡ 𝑓 = ◡ 𝐴 ) |
| 10 |
9
|
imaeq1d |
⊢ ( 𝑓 = 𝐴 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐴 “ ℕ ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑓 = 𝐴 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
| 12 |
11 1
|
elab2g |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 ∈ 𝑅 ↔ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
| 13 |
8 12
|
mpbid |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ∈ Fin ) |
| 14 |
6 13
|
jca |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |