Metamath Proof Explorer


Theorem eulerpartlemelr

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 8-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlemelr A0RA:0A-1Fin

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 inss1 0R0
4 3 sseli A0RA0
5 elmapi A0A:0
6 4 5 syl A0RA:0
7 inss2 0RR
8 7 sseli A0RAR
9 cnveq f=Af-1=A-1
10 9 imaeq1d f=Af-1=A-1
11 10 eleq1d f=Af-1FinA-1Fin
12 11 1 elab2g A0RARA-1Fin
13 8 12 mpbid A0RA-1Fin
14 6 13 jca A0RA:0A-1Fin