Description: Lemma for eulerpart . Value of the sum of a finite partition A (Contributed by Thierry Arnoux, 19-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerpartlems.r | |
|
eulerpartlems.s | |
||
Assertion | eulerpartlemsv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | |
|
2 | eulerpartlems.s | |
|
3 | 1 2 | eulerpartlemsv1 | |
4 | cnvimass | |
|
5 | 1 2 | eulerpartlemelr | |
6 | 5 | simpld | |
7 | 4 6 | fssdm | |
8 | 6 | adantr | |
9 | 7 | sselda | |
10 | 8 9 | ffvelcdmd | |
11 | 9 | nnnn0d | |
12 | 10 11 | nn0mulcld | |
13 | 12 | nn0cnd | |
14 | simpr | |
|
15 | 14 | eldifad | |
16 | 14 | eldifbd | |
17 | 6 | adantr | |
18 | ffn | |
|
19 | elpreima | |
|
20 | 17 18 19 | 3syl | |
21 | 16 20 | mtbid | |
22 | imnan | |
|
23 | 21 22 | sylibr | |
24 | 15 23 | mpd | |
25 | 17 15 | ffvelcdmd | |
26 | elnn0 | |
|
27 | 25 26 | sylib | |
28 | orel1 | |
|
29 | 24 27 28 | sylc | |
30 | 29 | oveq1d | |
31 | 15 | nncnd | |
32 | 31 | mul02d | |
33 | 30 32 | eqtrd | |
34 | nnuz | |
|
35 | 34 | eqimssi | |
36 | 35 | a1i | |
37 | 7 13 33 36 | sumss | |
38 | 3 37 | eqtr4d | |