| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpartlems.r |
|
| 2 |
|
eulerpartlems.s |
|
| 3 |
1 2
|
eulerpartlemsv1 |
|
| 4 |
|
cnvimass |
|
| 5 |
1 2
|
eulerpartlemelr |
|
| 6 |
5
|
simpld |
|
| 7 |
4 6
|
fssdm |
|
| 8 |
6
|
adantr |
|
| 9 |
7
|
sselda |
|
| 10 |
8 9
|
ffvelcdmd |
|
| 11 |
9
|
nnnn0d |
|
| 12 |
10 11
|
nn0mulcld |
|
| 13 |
12
|
nn0cnd |
|
| 14 |
|
simpr |
|
| 15 |
14
|
eldifad |
|
| 16 |
14
|
eldifbd |
|
| 17 |
6
|
adantr |
|
| 18 |
|
ffn |
|
| 19 |
|
elpreima |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
16 20
|
mtbid |
|
| 22 |
|
imnan |
|
| 23 |
21 22
|
sylibr |
|
| 24 |
15 23
|
mpd |
|
| 25 |
17 15
|
ffvelcdmd |
|
| 26 |
|
elnn0 |
|
| 27 |
25 26
|
sylib |
|
| 28 |
|
orel1 |
|
| 29 |
24 27 28
|
sylc |
|
| 30 |
29
|
oveq1d |
|
| 31 |
15
|
nncnd |
|
| 32 |
31
|
mul02d |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
|
nnuz |
|
| 35 |
34
|
eqimssi |
|
| 36 |
35
|
a1i |
|
| 37 |
7 13 33 36
|
sumss |
|
| 38 |
3 37
|
eqtr4d |
|