Metamath Proof Explorer


Theorem eulerpartlemsv1

Description: Lemma for eulerpart . Value of the sum of a partition A . (Contributed by Thierry Arnoux, 26-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlemsv1 A0RSA=kAkk

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 2 a1i A0RS=f0Rkfkk
4 simplr A0Rf=Akf=A
5 4 fveq1d A0Rf=Akfk=Ak
6 5 oveq1d A0Rf=Akfkk=Akk
7 6 sumeq2dv A0Rf=Akfkk=kAkk
8 id A0RA0R
9 sumex kAkkV
10 9 a1i A0RkAkkV
11 3 7 8 10 fvmptd A0RSA=kAkk