Metamath Proof Explorer


Theorem eulerpartlemsf

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 8-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlemsf S:0R0

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 simpl g=fkg=f
4 3 fveq1d g=fkgk=fk
5 4 oveq1d g=fkgkk=fkk
6 5 sumeq2dv g=fkgkk=kfkk
7 6 eleq1d g=fkgkk0kfkk0
8 1 2 eulerpartlemsv2 g0RSg=kg-1gkk
9 1 2 eulerpartlemsv1 g0RSg=kgkk
10 8 9 eqtr3d g0Rkg-1gkk=kgkk
11 1 2 eulerpartlemelr g0Rg:0g-1Fin
12 11 simprd g0Rg-1Fin
13 11 simpld g0Rg:0
14 13 adantr g0Rkg-1g:0
15 cnvimass g-1domg
16 15 13 fssdm g0Rg-1
17 16 sselda g0Rkg-1k
18 14 17 ffvelcdmd g0Rkg-1gk0
19 17 nnnn0d g0Rkg-1k0
20 18 19 nn0mulcld g0Rkg-1gkk0
21 12 20 fsumnn0cl g0Rkg-1gkk0
22 10 21 eqeltrrd g0Rkgkk0
23 7 22 vtoclga f0Rkfkk0
24 2 23 fmpti S:0R0