| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r | ⊢ 𝑅  =  { 𝑓  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | eulerpartlems.s | ⊢ 𝑆  =  ( 𝑓  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ↦  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑔  =  𝑓  ∧  𝑘  ∈  ℕ )  →  𝑔  =  𝑓 ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( ( 𝑔  =  𝑓  ∧  𝑘  ∈  ℕ )  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( 𝑔  =  𝑓  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  =  ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 6 | 5 | sumeq2dv | ⊢ ( 𝑔  =  𝑓  →  Σ 𝑘  ∈  ℕ ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑔  =  𝑓  →  ( Σ 𝑘  ∈  ℕ ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0  ↔  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) ) | 
						
							| 8 | 1 2 | eulerpartlemsv2 | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝑔 )  =  Σ 𝑘  ∈  ( ◡ 𝑔  “  ℕ ) ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 9 | 1 2 | eulerpartlemsv1 | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝑔 )  =  Σ 𝑘  ∈  ℕ ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 10 | 8 9 | eqtr3d | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑘  ∈  ( ◡ 𝑔  “  ℕ ) ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 11 | 1 2 | eulerpartlemelr | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑔 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝑔  “  ℕ )  ∈  Fin ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ◡ 𝑔  “  ℕ )  ∈  Fin ) | 
						
							| 13 | 11 | simpld | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  𝑔 : ℕ ⟶ ℕ0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ◡ 𝑔  “  ℕ ) )  →  𝑔 : ℕ ⟶ ℕ0 ) | 
						
							| 15 |  | cnvimass | ⊢ ( ◡ 𝑔  “  ℕ )  ⊆  dom  𝑔 | 
						
							| 16 | 15 13 | fssdm | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ◡ 𝑔  “  ℕ )  ⊆  ℕ ) | 
						
							| 17 | 16 | sselda | ⊢ ( ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ◡ 𝑔  “  ℕ ) )  →  𝑘  ∈  ℕ ) | 
						
							| 18 | 14 17 | ffvelcdmd | ⊢ ( ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ◡ 𝑔  “  ℕ ) )  →  ( 𝑔 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 19 | 17 | nnnn0d | ⊢ ( ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ◡ 𝑔  “  ℕ ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 20 | 18 19 | nn0mulcld | ⊢ ( ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ◡ 𝑔  “  ℕ ) )  →  ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 21 | 12 20 | fsumnn0cl | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑘  ∈  ( ◡ 𝑔  “  ℕ ) ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 22 | 10 21 | eqeltrrd | ⊢ ( 𝑔  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑘  ∈  ℕ ( ( 𝑔 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 23 | 7 22 | vtoclga | ⊢ ( 𝑓  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 24 | 2 23 | fmpti | ⊢ 𝑆 : ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 ) ⟶ ℕ0 |