| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r | ⊢ 𝑅  =  { 𝑓  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | eulerpartlems.s | ⊢ 𝑆  =  ( 𝑓  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ↦  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 3 | 1 2 | eulerpartlemsf | ⊢ 𝑆 : ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 ) ⟶ ℕ0 | 
						
							| 4 | 3 | ffvelcdmi | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 |  | nndiffz1 | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈  ℕ0  →  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  =  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈  ℕ0  →  ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 8 | 7 | pm5.32i | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  ↔  ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 10 |  | eldif | ⊢ ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  ( 𝑡  ∈  ℕ  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝑡  ∈  ℕ  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑡  ∈  ℕ ) | 
						
							| 13 | 1 2 | eulerpartlemelr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 16 | 12 15 | syldan | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 ) ) | 
						
							| 18 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 19 | 11 | simprd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  𝑡  ∈  ℕ ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 | 20 21 | eleqtrdi | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  𝑡  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 24 | 23 | nn0zd | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 25 |  | elfz5 | ⊢ ( ( 𝑡  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℤ )  →  ( 𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ↔  𝑡  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ↔  𝑡  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 27 | 26 | notbid | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ↔  ¬  𝑡  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 28 | 23 | nn0red | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 29 | 20 | nnred | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  𝑡  ∈  ℝ ) | 
						
							| 30 | 28 29 | ltnled | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ↔  ¬  𝑡  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 31 | 27 30 | bitr4d | ⊢ ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  →  ( ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ↔  ( 𝑆 ‘ 𝐴 )  <  𝑡 ) ) | 
						
							| 32 | 31 | biimpa | ⊢ ( ( ( 𝑡  ∈  ℕ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 )  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 𝑆 ‘ 𝐴 )  <  𝑡 ) | 
						
							| 33 | 12 18 19 32 | syl21anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝑆 ‘ 𝐴 )  <  𝑡 ) | 
						
							| 34 | 1 2 | eulerpartlemsv1 | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  𝑡  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 36 |  | id | ⊢ ( 𝑘  =  𝑡  →  𝑘  =  𝑡 ) | 
						
							| 37 | 35 36 | oveq12d | ⊢ ( 𝑘  =  𝑡  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 38 | 37 | cbvsumv | ⊢ Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) | 
						
							| 39 | 34 38 | eqtr2di | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑡  =  𝑙  →  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ↔  ( 𝑆 ‘ 𝐴 )  <  𝑙 ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑡  =  𝑙  →  ( 𝐴 ‘ 𝑡 )  =  ( 𝐴 ‘ 𝑙 ) ) | 
						
							| 42 | 41 | breq2d | ⊢ ( 𝑡  =  𝑙  →  ( 0  <  ( 𝐴 ‘ 𝑡 )  ↔  0  <  ( 𝐴 ‘ 𝑙 ) ) ) | 
						
							| 43 | 40 42 | anbi12d | ⊢ ( 𝑡  =  𝑙  →  ( ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) )  ↔  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) ) ) | 
						
							| 44 | 43 | cbvrexvw | ⊢ ( ∃ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) )  ↔  ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 48 | 47 | nn0red | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  𝑙  ∈  ℕ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  𝑙  ∈  ℕ ) | 
						
							| 51 | 50 | nnred | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  𝑙  ∈  ℝ ) | 
						
							| 52 |  | 1zzd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  1  ∈  ℤ ) | 
						
							| 53 | 14 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℕ ) | 
						
							| 55 |  | eqidd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  ∧  𝑚  =  𝑡 )  →  𝑚  =  𝑡 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  ∧  𝑚  =  𝑡 )  →  ( 𝐴 ‘ 𝑚 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 58 | 57 56 | oveq12d | ⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  ∧  𝑚  =  𝑡 )  →  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℕ ) | 
						
							| 60 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 61 | 59 | nnnn0d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℕ0 ) | 
						
							| 62 | 60 61 | nn0mulcld | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℕ0 ) | 
						
							| 63 | 55 58 59 62 | fvmptd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) ‘ 𝑡 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 64 | 53 54 63 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) ‘ 𝑡 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 65 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 66 | 65 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 67 | 54 | nnnn0d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℕ0 ) | 
						
							| 68 | 66 67 | nn0mulcld | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℕ0 ) | 
						
							| 69 | 68 | nn0red | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℝ ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑚  =  𝑡  →  ( 𝐴 ‘ 𝑚 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 71 |  | id | ⊢ ( 𝑚  =  𝑡  →  𝑚  =  𝑡 ) | 
						
							| 72 | 70 71 | oveq12d | ⊢ ( 𝑚  =  𝑡  →  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 73 | 72 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  =  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 74 | 68 73 | fmptd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℕ0 ) | 
						
							| 75 |  | nn0sscn | ⊢ ℕ0  ⊆  ℂ | 
						
							| 76 |  | fss | ⊢ ( ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℕ0  ∧  ℕ0  ⊆  ℂ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℂ ) | 
						
							| 77 | 74 75 76 | sylancl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℂ ) | 
						
							| 78 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 79 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 80 |  | eqid | ⊢ ( ℂ  ∖  { 0 } )  =  ( ℂ  ∖  { 0 } ) | 
						
							| 81 | 80 | ffs2 | ⊢ ( ( ℕ  ∈  V  ∧  0  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℂ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  =  ( ◡ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  “  ( ℂ  ∖  { 0 } ) ) ) | 
						
							| 82 | 78 79 81 | mp3an12 | ⊢ ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) : ℕ ⟶ ℂ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  =  ( ◡ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  “  ( ℂ  ∖  { 0 } ) ) ) | 
						
							| 83 | 77 82 | syl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  =  ( ◡ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  “  ( ℂ  ∖  { 0 } ) ) ) | 
						
							| 84 |  | fcdmnn0supp | ⊢ ( ( ℕ  ∈  V  ∧  𝐴 : ℕ ⟶ ℕ0 )  →  ( 𝐴  supp  0 )  =  ( ◡ 𝐴  “  ℕ ) ) | 
						
							| 85 | 78 65 84 | sylancr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝐴  supp  0 )  =  ( ◡ 𝐴  “  ℕ ) ) | 
						
							| 86 | 13 | simprd | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ◡ 𝐴  “  ℕ )  ∈  Fin ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ◡ 𝐴  “  ℕ )  ∈  Fin ) | 
						
							| 88 | 85 87 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝐴  supp  0 )  ∈  Fin ) | 
						
							| 89 | 78 | a1i | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  ℕ  ∈  V ) | 
						
							| 90 | 79 | a1i | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  0  ∈  ℕ0 ) | 
						
							| 91 |  | ffn | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  𝐴  Fn  ℕ ) | 
						
							| 92 |  | simp3 | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( 0  ·  𝑡 ) ) | 
						
							| 94 |  | simp2 | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  𝑡  ∈  ℕ ) | 
						
							| 95 | 94 | nncnd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  𝑡  ∈  ℂ ) | 
						
							| 96 | 95 | mul02d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  ( 0  ·  𝑡 )  =  0 ) | 
						
							| 97 | 93 96 | eqtrd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑡  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑡 )  =  0 )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  0 ) | 
						
							| 98 | 73 89 90 91 97 | suppss3 | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  ⊆  ( 𝐴  supp  0 ) ) | 
						
							| 99 | 65 98 | syl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  ⊆  ( 𝐴  supp  0 ) ) | 
						
							| 100 |  | ssfi | ⊢ ( ( ( 𝐴  supp  0 )  ∈  Fin  ∧  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  ⊆  ( 𝐴  supp  0 ) )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  ∈  Fin ) | 
						
							| 101 | 88 99 100 | syl2anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  supp  0 )  ∈  Fin ) | 
						
							| 102 | 83 101 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ◡ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) )  “  ( ℂ  ∖  { 0 } ) )  ∈  Fin ) | 
						
							| 103 | 21 52 77 102 | fsumcvg4 | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  𝑚 ) ) )  ∈  dom   ⇝  ) | 
						
							| 104 | 21 52 64 69 103 | isumrecl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℝ ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℝ ) | 
						
							| 106 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  <  𝑙 ) | 
						
							| 107 | 14 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝐴 ‘ 𝑙 )  ∈  ℕ0 ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝐴 ‘ 𝑙 )  ∈  ℕ0 ) | 
						
							| 109 | 108 | nn0red | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝐴 ‘ 𝑙 )  ∈  ℝ ) | 
						
							| 110 | 109 51 | remulcld | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 )  ∈  ℝ ) | 
						
							| 111 | 50 | nnnn0d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 112 | 111 | nn0ge0d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  0  ≤  𝑙 ) | 
						
							| 113 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  0  <  ( 𝐴 ‘ 𝑙 ) ) | 
						
							| 114 |  | elnnnn0b | ⊢ ( ( 𝐴 ‘ 𝑙 )  ∈  ℕ  ↔  ( ( 𝐴 ‘ 𝑙 )  ∈  ℕ0  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) ) | 
						
							| 115 |  | nnge1 | ⊢ ( ( 𝐴 ‘ 𝑙 )  ∈  ℕ  →  1  ≤  ( 𝐴 ‘ 𝑙 ) ) | 
						
							| 116 | 114 115 | sylbir | ⊢ ( ( ( 𝐴 ‘ 𝑙 )  ∈  ℕ0  ∧  0  <  ( 𝐴 ‘ 𝑙 ) )  →  1  ≤  ( 𝐴 ‘ 𝑙 ) ) | 
						
							| 117 | 108 113 116 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  1  ≤  ( 𝐴 ‘ 𝑙 ) ) | 
						
							| 118 | 51 109 112 117 | lemulge12d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  𝑙  ≤  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 ) ) | 
						
							| 119 | 107 | nn0cnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( 𝐴 ‘ 𝑙 )  ∈  ℂ ) | 
						
							| 120 | 49 | nncnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  𝑙  ∈  ℂ ) | 
						
							| 121 | 119 120 | mulcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 )  ∈  ℂ ) | 
						
							| 122 |  | id | ⊢ ( 𝑡  =  𝑙  →  𝑡  =  𝑙 ) | 
						
							| 123 | 41 122 | oveq12d | ⊢ ( 𝑡  =  𝑙  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 ) ) | 
						
							| 124 | 123 | sumsn | ⊢ ( ( 𝑙  ∈  ℕ  ∧  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 )  ∈  ℂ )  →  Σ 𝑡  ∈  { 𝑙 } ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 ) ) | 
						
							| 125 | 49 121 124 | syl2anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  Σ 𝑡  ∈  { 𝑙 } ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 ) ) | 
						
							| 126 |  | snfi | ⊢ { 𝑙 }  ∈  Fin | 
						
							| 127 | 126 | a1i | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  { 𝑙 }  ∈  Fin ) | 
						
							| 128 | 49 | snssd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  { 𝑙 }  ⊆  ℕ ) | 
						
							| 129 | 68 | nn0ge0d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  𝑡  ∈  ℕ )  →  0  ≤  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 130 | 21 52 127 128 64 69 129 103 | isumless | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  Σ 𝑡  ∈  { 𝑙 } ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 131 | 125 130 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 )  ≤  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( ( 𝐴 ‘ 𝑙 )  ·  𝑙 )  ≤  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 133 | 51 110 105 118 132 | letrd | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  𝑙  ≤  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 134 | 48 51 105 106 133 | ltletrd | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑙  ∈  ℕ )  ∧  ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  <  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 135 | 134 | r19.29an | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  ( 𝑆 ‘ 𝐴 )  <  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 136 | 46 135 | gtned | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) ) )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≠  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 137 | 136 | ex | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ∃ 𝑙  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑙  ∧  0  <  ( 𝐴 ‘ 𝑙 ) )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≠  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 138 | 44 137 | biimtrid | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ∃ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) )  →  Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≠  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 139 | 138 | necon2bd | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( Σ 𝑡  ∈  ℕ ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( 𝑆 ‘ 𝐴 )  →  ¬  ∃ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) ) | 
						
							| 140 | 39 139 | mpd | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ¬  ∃ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 141 |  | ralnex | ⊢ ( ∀ 𝑡  ∈  ℕ ¬  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) )  ↔  ¬  ∃ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 142 | 140 141 | sylibr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ∀ 𝑡  ∈  ℕ ¬  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 143 |  | imnan | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  <  𝑡  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) )  ↔  ¬  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 144 | 143 | ralbii | ⊢ ( ∀ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) )  ↔  ∀ 𝑡  ∈  ℕ ¬  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  ∧  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 145 | 142 144 | sylibr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ∀ 𝑡  ∈  ℕ ( ( 𝑆 ‘ 𝐴 )  <  𝑡  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 146 | 145 | r19.21bi | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝑆 ‘ 𝐴 )  <  𝑡  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 147 | 146 | imp | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  ∧  ( 𝑆 ‘ 𝐴 )  <  𝑡 )  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 148 | 17 12 33 147 | syl21anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ¬  0  <  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 149 |  | nn0re | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  ( 𝐴 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 150 |  | 0red | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 151 | 149 150 | lenltd | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  ( ( 𝐴 ‘ 𝑡 )  ≤  0  ↔  ¬  0  <  ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 152 |  | nn0le0eq0 | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  ( ( 𝐴 ‘ 𝑡 )  ≤  0  ↔  ( 𝐴 ‘ 𝑡 )  =  0 ) ) | 
						
							| 153 | 151 152 | bitr3d | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  ( ¬  0  <  ( 𝐴 ‘ 𝑡 )  ↔  ( 𝐴 ‘ 𝑡 )  =  0 ) ) | 
						
							| 154 | 153 | biimpa | ⊢ ( ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  ∧  ¬  0  <  ( 𝐴 ‘ 𝑡 ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 155 | 16 148 154 | syl2anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 156 | 8 155 | sylbir | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) |