Metamath Proof Explorer


Theorem nndiffz1

Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017)

Ref Expression
Assertion nndiffz1 ( 𝑁 ∈ ℕ0 → ( ℕ ∖ ( 1 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
3 elfz1 ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁 ) ) )
4 1 2 3 sylancr ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁 ) ) )
5 3anass ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
6 4 5 bitrdi ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗𝑗𝑁 ) ) ) )
7 6 baibd ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗𝑗𝑁 ) ) )
8 7 baibd ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ 𝑗𝑁 ) )
9 8 notbid ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ¬ 𝑗𝑁 ) )
10 simpl ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑁 ∈ ℤ )
11 10 zred ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑁 ∈ ℝ )
12 simpr ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ )
13 12 zred ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ )
14 11 13 ltnled ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑁 < 𝑗 ↔ ¬ 𝑗𝑁 ) )
15 zltp1le ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑁 < 𝑗 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
16 14 15 bitr3d ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ¬ 𝑗𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
17 2 16 sylan ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( ¬ 𝑗𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
18 17 adantr ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
19 9 18 bitrd ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
20 19 pm5.32da ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 1 ≤ 𝑗 ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) )
21 1red ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ∈ ℝ )
22 simpll ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑁 ∈ ℕ0 )
23 22 nn0red ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑁 ∈ ℝ )
24 23 21 readdcld ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 𝑁 + 1 ) ∈ ℝ )
25 simplr ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℤ )
26 25 zred ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℝ )
27 0p1e1 ( 0 + 1 ) = 1
28 0red ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 0 ∈ ℝ )
29 22 nn0ge0d ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 0 ≤ 𝑁 )
30 28 23 21 29 leadd1dd ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 0 + 1 ) ≤ ( 𝑁 + 1 ) )
31 27 30 eqbrtrrid ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ≤ ( 𝑁 + 1 ) )
32 simpr ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 𝑁 + 1 ) ≤ 𝑗 )
33 21 24 26 31 32 letrd ( ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ≤ 𝑗 )
34 33 ex ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( ( 𝑁 + 1 ) ≤ 𝑗 → 1 ≤ 𝑗 ) )
35 34 pm4.71rd ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( ( 𝑁 + 1 ) ≤ 𝑗 ↔ ( 1 ≤ 𝑗 ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) )
36 20 35 bitr4d ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) )
37 36 pm5.32da ( 𝑁 ∈ ℕ0 → ( ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) )
38 eldif ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) )
39 elnnz1 ( 𝑗 ∈ ℕ ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) )
40 39 anbi1i ( ( 𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) )
41 anass ( ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) )
42 38 40 41 3bitri ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) )
43 42 a1i ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ) )
44 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
45 44 nn0zd ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℤ )
46 eluz1 ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) )
47 45 46 syl ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) )
48 37 43 47 3bitr4d ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ 𝑗 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
49 48 eqrdv ( 𝑁 ∈ ℕ0 → ( ℕ ∖ ( 1 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )