Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
3 |
|
elfz1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
5 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
6 |
4 5
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
7 |
6
|
baibd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
8 |
7
|
baibd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↔ 𝑗 ≤ 𝑁 ) ) |
9 |
8
|
notbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ¬ 𝑗 ≤ 𝑁 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
11 |
10
|
zred |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
12 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ ) |
13 |
12
|
zred |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
14 |
11 13
|
ltnled |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑁 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑁 ) ) |
15 |
|
zltp1le |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑁 < 𝑗 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
16 |
14 15
|
bitr3d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ¬ 𝑗 ≤ 𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
17 |
2 16
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ¬ 𝑗 ≤ 𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗 ≤ 𝑁 ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
19 |
9 18
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ 1 ≤ 𝑗 ) → ( ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
20 |
19
|
pm5.32da |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 1 ≤ 𝑗 ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) ) |
21 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ∈ ℝ ) |
22 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑁 ∈ ℕ0 ) |
23 |
22
|
nn0red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑁 ∈ ℝ ) |
24 |
23 21
|
readdcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 𝑁 + 1 ) ∈ ℝ ) |
25 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
26 |
25
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
27 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
28 |
|
0red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 0 ∈ ℝ ) |
29 |
22
|
nn0ge0d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 0 ≤ 𝑁 ) |
30 |
28 23 21 29
|
leadd1dd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 0 + 1 ) ≤ ( 𝑁 + 1 ) ) |
31 |
27 30
|
eqbrtrrid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ≤ ( 𝑁 + 1 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → ( 𝑁 + 1 ) ≤ 𝑗 ) |
33 |
21 24 26 31 32
|
letrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) → 1 ≤ 𝑗 ) |
34 |
33
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑁 + 1 ) ≤ 𝑗 → 1 ≤ 𝑗 ) ) |
35 |
34
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑁 + 1 ) ≤ 𝑗 ↔ ( 1 ≤ 𝑗 ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) ) |
36 |
20 35
|
bitr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑁 + 1 ) ≤ 𝑗 ) ) |
37 |
36
|
pm5.32da |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) ) |
38 |
|
eldif |
⊢ ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) |
39 |
|
elnnz1 |
⊢ ( 𝑗 ∈ ℕ ↔ ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ) |
40 |
39
|
anbi1i |
⊢ ( ( 𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) |
41 |
|
anass |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ) ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ) |
42 |
38 40 41
|
3bitri |
⊢ ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ) |
43 |
42
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) ) ) |
44 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
45 |
44
|
nn0zd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℤ ) |
46 |
|
eluz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) ) |
47 |
45 46
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑁 + 1 ) ≤ 𝑗 ) ) ) |
48 |
37 43 47
|
3bitr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑗 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ↔ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
49 |
48
|
eqrdv |
⊢ ( 𝑁 ∈ ℕ0 → ( ℕ ∖ ( 1 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |