| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r | ⊢ 𝑅  =  { 𝑓  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | eulerpartlems.s | ⊢ 𝑆  =  ( 𝑓  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ↦  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 3 | 1 2 | eulerpartlemsv1 | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 4 |  | fzssuz | ⊢ ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 | 4 5 | sseqtrri | ⊢ ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ⊆  ℕ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ⊆  ℕ ) | 
						
							| 8 | 1 2 | eulerpartlemelr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 11 | 7 | sselda | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 12 | 10 11 | ffvelcdmd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | nn0cnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 11 | nncnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 15 | 13 14 | mulcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  ∈  ℂ ) | 
						
							| 16 | 1 2 | eulerpartlems | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ∀ 𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 18 |  | fveqeq2 | ⊢ ( 𝑘  =  𝑡  →  ( ( 𝐴 ‘ 𝑘 )  =  0  ↔  ( 𝐴 ‘ 𝑡 )  =  0 ) ) | 
						
							| 19 | 18 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ( 𝐴 ‘ 𝑘 )  =  0  ↔  ∀ 𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 20 | 17 19 | sylibr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 21 | 1 2 | eulerpartlemsf | ⊢ 𝑆 : ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 ) ⟶ ℕ0 | 
						
							| 22 | 21 | ffvelcdmi | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 23 |  | nndiffz1 | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈  ℕ0  →  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  =  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  =  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 25 | 20 24 | raleqtrrdv | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ∀ 𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 26 | 25 | r19.21bi | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  ( 0  ·  𝑘 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 29 | 28 | eldifad | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 30 | 29 | nncnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 31 | 30 | mul02d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 0  ·  𝑘 )  =  0 ) | 
						
							| 32 | 27 31 | eqtrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  0 ) | 
						
							| 33 | 5 | eqimssi | ⊢ ℕ  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ℕ  ⊆  ( ℤ≥ ‘ 1 ) ) | 
						
							| 35 | 7 15 32 34 | sumss | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 36 | 3 35 | eqtr4d | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) |