| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r |  |-  R = { f | ( `' f " NN ) e. Fin } | 
						
							| 2 |  | eulerpartlems.s |  |-  S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) | 
						
							| 3 | 1 2 | eulerpartlemsv1 |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. NN ( ( A ` k ) x. k ) ) | 
						
							| 4 |  | fzssuz |  |-  ( 1 ... ( S ` A ) ) C_ ( ZZ>= ` 1 ) | 
						
							| 5 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 6 | 4 5 | sseqtrri |  |-  ( 1 ... ( S ` A ) ) C_ NN | 
						
							| 7 | 6 | a1i |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( 1 ... ( S ` A ) ) C_ NN ) | 
						
							| 8 | 1 2 | eulerpartlemelr |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) | 
						
							| 9 | 8 | simpld |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> A : NN --> NN0 ) | 
						
							| 11 | 7 | sselda |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> k e. NN ) | 
						
							| 12 | 10 11 | ffvelcdmd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( A ` k ) e. NN0 ) | 
						
							| 13 | 12 | nn0cnd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( A ` k ) e. CC ) | 
						
							| 14 | 11 | nncnd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> k e. CC ) | 
						
							| 15 | 13 14 | mulcld |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( ( A ` k ) x. k ) e. CC ) | 
						
							| 16 | 1 2 | eulerpartlems |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) -> ( A ` t ) = 0 ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` t ) = 0 ) | 
						
							| 18 |  | fveqeq2 |  |-  ( k = t -> ( ( A ` k ) = 0 <-> ( A ` t ) = 0 ) ) | 
						
							| 19 | 18 | cbvralvw |  |-  ( A. k e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` k ) = 0 <-> A. t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` t ) = 0 ) | 
						
							| 20 | 17 19 | sylibr |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. k e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` k ) = 0 ) | 
						
							| 21 | 1 2 | eulerpartlemsf |  |-  S : ( ( NN0 ^m NN ) i^i R ) --> NN0 | 
						
							| 22 | 21 | ffvelcdmi |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) e. NN0 ) | 
						
							| 23 |  | nndiffz1 |  |-  ( ( S ` A ) e. NN0 -> ( NN \ ( 1 ... ( S ` A ) ) ) = ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( NN \ ( 1 ... ( S ` A ) ) ) = ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) | 
						
							| 25 | 20 24 | raleqtrrdv |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. k e. ( NN \ ( 1 ... ( S ` A ) ) ) ( A ` k ) = 0 ) | 
						
							| 26 | 25 | r19.21bi |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( A ` k ) = 0 ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( ( A ` k ) x. k ) = ( 0 x. k ) ) | 
						
							| 28 |  | simpr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) | 
						
							| 29 | 28 | eldifad |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. NN ) | 
						
							| 30 | 29 | nncnd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. CC ) | 
						
							| 31 | 30 | mul02d |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( 0 x. k ) = 0 ) | 
						
							| 32 | 27 31 | eqtrd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( ( A ` k ) x. k ) = 0 ) | 
						
							| 33 | 5 | eqimssi |  |-  NN C_ ( ZZ>= ` 1 ) | 
						
							| 34 | 33 | a1i |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> NN C_ ( ZZ>= ` 1 ) ) | 
						
							| 35 | 7 15 32 34 | sumss |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. ( 1 ... ( S ` A ) ) ( ( A ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) | 
						
							| 36 | 3 35 | eqtr4d |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. ( 1 ... ( S ` A ) ) ( ( A ` k ) x. k ) ) |