| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r |  |-  R = { f | ( `' f " NN ) e. Fin } | 
						
							| 2 |  | eulerpartlems.s |  |-  S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) | 
						
							| 3 | 1 2 | eulerpartlemsf |  |-  S : ( ( NN0 ^m NN ) i^i R ) --> NN0 | 
						
							| 4 | 3 | ffvelcdmi |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) e. NN0 ) | 
						
							| 5 |  | nndiffz1 |  |-  ( ( S ` A ) e. NN0 -> ( NN \ ( 1 ... ( S ` A ) ) ) = ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ( S ` A ) e. NN0 -> ( t e. ( NN \ ( 1 ... ( S ` A ) ) ) <-> t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( t e. ( NN \ ( 1 ... ( S ` A ) ) ) <-> t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) ) | 
						
							| 8 | 7 | pm5.32i |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) <-> ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) ) | 
						
							| 9 |  | simpr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) | 
						
							| 10 |  | eldif |  |-  ( t e. ( NN \ ( 1 ... ( S ` A ) ) ) <-> ( t e. NN /\ -. t e. ( 1 ... ( S ` A ) ) ) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( t e. NN /\ -. t e. ( 1 ... ( S ` A ) ) ) ) | 
						
							| 12 | 11 | simpld |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> t e. NN ) | 
						
							| 13 | 1 2 | eulerpartlemelr |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) | 
						
							| 14 | 13 | simpld |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) | 
						
							| 15 | 14 | ffvelcdmda |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. NN ) -> ( A ` t ) e. NN0 ) | 
						
							| 16 | 12 15 | syldan |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( A ` t ) e. NN0 ) | 
						
							| 17 |  | simpl |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> A e. ( ( NN0 ^m NN ) i^i R ) ) | 
						
							| 18 | 4 | adantr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( S ` A ) e. NN0 ) | 
						
							| 19 | 11 | simprd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> -. t e. ( 1 ... ( S ` A ) ) ) | 
						
							| 20 |  | simpl |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> t e. NN ) | 
						
							| 21 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 22 | 20 21 | eleqtrdi |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> t e. ( ZZ>= ` 1 ) ) | 
						
							| 23 |  | simpr |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( S ` A ) e. NN0 ) | 
						
							| 24 | 23 | nn0zd |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( S ` A ) e. ZZ ) | 
						
							| 25 |  | elfz5 |  |-  ( ( t e. ( ZZ>= ` 1 ) /\ ( S ` A ) e. ZZ ) -> ( t e. ( 1 ... ( S ` A ) ) <-> t <_ ( S ` A ) ) ) | 
						
							| 26 | 22 24 25 | syl2anc |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( t e. ( 1 ... ( S ` A ) ) <-> t <_ ( S ` A ) ) ) | 
						
							| 27 | 26 | notbid |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( -. t e. ( 1 ... ( S ` A ) ) <-> -. t <_ ( S ` A ) ) ) | 
						
							| 28 | 23 | nn0red |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( S ` A ) e. RR ) | 
						
							| 29 | 20 | nnred |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> t e. RR ) | 
						
							| 30 | 28 29 | ltnled |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( ( S ` A ) < t <-> -. t <_ ( S ` A ) ) ) | 
						
							| 31 | 27 30 | bitr4d |  |-  ( ( t e. NN /\ ( S ` A ) e. NN0 ) -> ( -. t e. ( 1 ... ( S ` A ) ) <-> ( S ` A ) < t ) ) | 
						
							| 32 | 31 | biimpa |  |-  ( ( ( t e. NN /\ ( S ` A ) e. NN0 ) /\ -. t e. ( 1 ... ( S ` A ) ) ) -> ( S ` A ) < t ) | 
						
							| 33 | 12 18 19 32 | syl21anc |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( S ` A ) < t ) | 
						
							| 34 | 1 2 | eulerpartlemsv1 |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. NN ( ( A ` k ) x. k ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = t -> ( A ` k ) = ( A ` t ) ) | 
						
							| 36 |  | id |  |-  ( k = t -> k = t ) | 
						
							| 37 | 35 36 | oveq12d |  |-  ( k = t -> ( ( A ` k ) x. k ) = ( ( A ` t ) x. t ) ) | 
						
							| 38 | 37 | cbvsumv |  |-  sum_ k e. NN ( ( A ` k ) x. k ) = sum_ t e. NN ( ( A ` t ) x. t ) | 
						
							| 39 | 34 38 | eqtr2di |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> sum_ t e. NN ( ( A ` t ) x. t ) = ( S ` A ) ) | 
						
							| 40 |  | breq2 |  |-  ( t = l -> ( ( S ` A ) < t <-> ( S ` A ) < l ) ) | 
						
							| 41 |  | fveq2 |  |-  ( t = l -> ( A ` t ) = ( A ` l ) ) | 
						
							| 42 | 41 | breq2d |  |-  ( t = l -> ( 0 < ( A ` t ) <-> 0 < ( A ` l ) ) ) | 
						
							| 43 | 40 42 | anbi12d |  |-  ( t = l -> ( ( ( S ` A ) < t /\ 0 < ( A ` t ) ) <-> ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) ) | 
						
							| 44 | 43 | cbvrexvw |  |-  ( E. t e. NN ( ( S ` A ) < t /\ 0 < ( A ` t ) ) <-> E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) | 
						
							| 45 | 4 | adantr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) e. NN0 ) | 
						
							| 46 | 45 | nn0red |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) e. RR ) | 
						
							| 47 | 4 | ad2antrr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) e. NN0 ) | 
						
							| 48 | 47 | nn0red |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) e. RR ) | 
						
							| 49 |  | simpr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> l e. NN ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> l e. NN ) | 
						
							| 51 | 50 | nnred |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> l e. RR ) | 
						
							| 52 |  | 1zzd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> 1 e. ZZ ) | 
						
							| 53 | 14 | ad2antrr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> A : NN --> NN0 ) | 
						
							| 54 |  | simpr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> t e. NN ) | 
						
							| 55 |  | eqidd |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> ( m e. NN |-> ( ( A ` m ) x. m ) ) = ( m e. NN |-> ( ( A ` m ) x. m ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ( A : NN --> NN0 /\ t e. NN ) /\ m = t ) -> m = t ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( A : NN --> NN0 /\ t e. NN ) /\ m = t ) -> ( A ` m ) = ( A ` t ) ) | 
						
							| 58 | 57 56 | oveq12d |  |-  ( ( ( A : NN --> NN0 /\ t e. NN ) /\ m = t ) -> ( ( A ` m ) x. m ) = ( ( A ` t ) x. t ) ) | 
						
							| 59 |  | simpr |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> t e. NN ) | 
						
							| 60 |  | ffvelcdm |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> ( A ` t ) e. NN0 ) | 
						
							| 61 | 59 | nnnn0d |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> t e. NN0 ) | 
						
							| 62 | 60 61 | nn0mulcld |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> ( ( A ` t ) x. t ) e. NN0 ) | 
						
							| 63 | 55 58 59 62 | fvmptd |  |-  ( ( A : NN --> NN0 /\ t e. NN ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) ` t ) = ( ( A ` t ) x. t ) ) | 
						
							| 64 | 53 54 63 | syl2anc |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) ` t ) = ( ( A ` t ) x. t ) ) | 
						
							| 65 | 14 | adantr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> A : NN --> NN0 ) | 
						
							| 66 | 65 | ffvelcdmda |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> ( A ` t ) e. NN0 ) | 
						
							| 67 | 54 | nnnn0d |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> t e. NN0 ) | 
						
							| 68 | 66 67 | nn0mulcld |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> ( ( A ` t ) x. t ) e. NN0 ) | 
						
							| 69 | 68 | nn0red |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> ( ( A ` t ) x. t ) e. RR ) | 
						
							| 70 |  | fveq2 |  |-  ( m = t -> ( A ` m ) = ( A ` t ) ) | 
						
							| 71 |  | id |  |-  ( m = t -> m = t ) | 
						
							| 72 | 70 71 | oveq12d |  |-  ( m = t -> ( ( A ` m ) x. m ) = ( ( A ` t ) x. t ) ) | 
						
							| 73 | 72 | cbvmptv |  |-  ( m e. NN |-> ( ( A ` m ) x. m ) ) = ( t e. NN |-> ( ( A ` t ) x. t ) ) | 
						
							| 74 | 68 73 | fmptd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> NN0 ) | 
						
							| 75 |  | nn0sscn |  |-  NN0 C_ CC | 
						
							| 76 |  | fss |  |-  ( ( ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> NN0 /\ NN0 C_ CC ) -> ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> CC ) | 
						
							| 77 | 74 75 76 | sylancl |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> CC ) | 
						
							| 78 |  | nnex |  |-  NN e. _V | 
						
							| 79 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 80 |  | eqid |  |-  ( CC \ { 0 } ) = ( CC \ { 0 } ) | 
						
							| 81 | 80 | ffs2 |  |-  ( ( NN e. _V /\ 0 e. NN0 /\ ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> CC ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) = ( `' ( m e. NN |-> ( ( A ` m ) x. m ) ) " ( CC \ { 0 } ) ) ) | 
						
							| 82 | 78 79 81 | mp3an12 |  |-  ( ( m e. NN |-> ( ( A ` m ) x. m ) ) : NN --> CC -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) = ( `' ( m e. NN |-> ( ( A ` m ) x. m ) ) " ( CC \ { 0 } ) ) ) | 
						
							| 83 | 77 82 | syl |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) = ( `' ( m e. NN |-> ( ( A ` m ) x. m ) ) " ( CC \ { 0 } ) ) ) | 
						
							| 84 |  | fcdmnn0supp |  |-  ( ( NN e. _V /\ A : NN --> NN0 ) -> ( A supp 0 ) = ( `' A " NN ) ) | 
						
							| 85 | 78 65 84 | sylancr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( A supp 0 ) = ( `' A " NN ) ) | 
						
							| 86 | 13 | simprd |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( `' A " NN ) e. Fin ) | 
						
							| 87 | 86 | adantr |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( `' A " NN ) e. Fin ) | 
						
							| 88 | 85 87 | eqeltrd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( A supp 0 ) e. Fin ) | 
						
							| 89 | 78 | a1i |  |-  ( A : NN --> NN0 -> NN e. _V ) | 
						
							| 90 | 79 | a1i |  |-  ( A : NN --> NN0 -> 0 e. NN0 ) | 
						
							| 91 |  | ffn |  |-  ( A : NN --> NN0 -> A Fn NN ) | 
						
							| 92 |  | simp3 |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> ( A ` t ) = 0 ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> ( ( A ` t ) x. t ) = ( 0 x. t ) ) | 
						
							| 94 |  | simp2 |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> t e. NN ) | 
						
							| 95 | 94 | nncnd |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> t e. CC ) | 
						
							| 96 | 95 | mul02d |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> ( 0 x. t ) = 0 ) | 
						
							| 97 | 93 96 | eqtrd |  |-  ( ( A : NN --> NN0 /\ t e. NN /\ ( A ` t ) = 0 ) -> ( ( A ` t ) x. t ) = 0 ) | 
						
							| 98 | 73 89 90 91 97 | suppss3 |  |-  ( A : NN --> NN0 -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) C_ ( A supp 0 ) ) | 
						
							| 99 | 65 98 | syl |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) C_ ( A supp 0 ) ) | 
						
							| 100 |  | ssfi |  |-  ( ( ( A supp 0 ) e. Fin /\ ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) C_ ( A supp 0 ) ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) e. Fin ) | 
						
							| 101 | 88 99 100 | syl2anc |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( ( m e. NN |-> ( ( A ` m ) x. m ) ) supp 0 ) e. Fin ) | 
						
							| 102 | 83 101 | eqeltrrd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( `' ( m e. NN |-> ( ( A ` m ) x. m ) ) " ( CC \ { 0 } ) ) e. Fin ) | 
						
							| 103 | 21 52 77 102 | fsumcvg4 |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> seq 1 ( + , ( m e. NN |-> ( ( A ` m ) x. m ) ) ) e. dom ~~> ) | 
						
							| 104 | 21 52 64 69 103 | isumrecl |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> sum_ t e. NN ( ( A ` t ) x. t ) e. RR ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> sum_ t e. NN ( ( A ` t ) x. t ) e. RR ) | 
						
							| 106 |  | simprl |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) < l ) | 
						
							| 107 | 14 | ffvelcdmda |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( A ` l ) e. NN0 ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( A ` l ) e. NN0 ) | 
						
							| 109 | 108 | nn0red |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( A ` l ) e. RR ) | 
						
							| 110 | 109 51 | remulcld |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( ( A ` l ) x. l ) e. RR ) | 
						
							| 111 | 50 | nnnn0d |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> l e. NN0 ) | 
						
							| 112 | 111 | nn0ge0d |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> 0 <_ l ) | 
						
							| 113 |  | simprr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> 0 < ( A ` l ) ) | 
						
							| 114 |  | elnnnn0b |  |-  ( ( A ` l ) e. NN <-> ( ( A ` l ) e. NN0 /\ 0 < ( A ` l ) ) ) | 
						
							| 115 |  | nnge1 |  |-  ( ( A ` l ) e. NN -> 1 <_ ( A ` l ) ) | 
						
							| 116 | 114 115 | sylbir |  |-  ( ( ( A ` l ) e. NN0 /\ 0 < ( A ` l ) ) -> 1 <_ ( A ` l ) ) | 
						
							| 117 | 108 113 116 | syl2anc |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> 1 <_ ( A ` l ) ) | 
						
							| 118 | 51 109 112 117 | lemulge12d |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> l <_ ( ( A ` l ) x. l ) ) | 
						
							| 119 | 107 | nn0cnd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( A ` l ) e. CC ) | 
						
							| 120 | 49 | nncnd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> l e. CC ) | 
						
							| 121 | 119 120 | mulcld |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( ( A ` l ) x. l ) e. CC ) | 
						
							| 122 |  | id |  |-  ( t = l -> t = l ) | 
						
							| 123 | 41 122 | oveq12d |  |-  ( t = l -> ( ( A ` t ) x. t ) = ( ( A ` l ) x. l ) ) | 
						
							| 124 | 123 | sumsn |  |-  ( ( l e. NN /\ ( ( A ` l ) x. l ) e. CC ) -> sum_ t e. { l } ( ( A ` t ) x. t ) = ( ( A ` l ) x. l ) ) | 
						
							| 125 | 49 121 124 | syl2anc |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> sum_ t e. { l } ( ( A ` t ) x. t ) = ( ( A ` l ) x. l ) ) | 
						
							| 126 |  | snfi |  |-  { l } e. Fin | 
						
							| 127 | 126 | a1i |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> { l } e. Fin ) | 
						
							| 128 | 49 | snssd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> { l } C_ NN ) | 
						
							| 129 | 68 | nn0ge0d |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ t e. NN ) -> 0 <_ ( ( A ` t ) x. t ) ) | 
						
							| 130 | 21 52 127 128 64 69 129 103 | isumless |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> sum_ t e. { l } ( ( A ` t ) x. t ) <_ sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 131 | 125 130 | eqbrtrrd |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) -> ( ( A ` l ) x. l ) <_ sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( ( A ` l ) x. l ) <_ sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 133 | 51 110 105 118 132 | letrd |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> l <_ sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 134 | 48 51 105 106 133 | ltletrd |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ l e. NN ) /\ ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) < sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 135 | 134 | r19.29an |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> ( S ` A ) < sum_ t e. NN ( ( A ` t ) x. t ) ) | 
						
							| 136 | 46 135 | gtned |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) ) -> sum_ t e. NN ( ( A ` t ) x. t ) =/= ( S ` A ) ) | 
						
							| 137 | 136 | ex |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( E. l e. NN ( ( S ` A ) < l /\ 0 < ( A ` l ) ) -> sum_ t e. NN ( ( A ` t ) x. t ) =/= ( S ` A ) ) ) | 
						
							| 138 | 44 137 | biimtrid |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( E. t e. NN ( ( S ` A ) < t /\ 0 < ( A ` t ) ) -> sum_ t e. NN ( ( A ` t ) x. t ) =/= ( S ` A ) ) ) | 
						
							| 139 | 138 | necon2bd |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( sum_ t e. NN ( ( A ` t ) x. t ) = ( S ` A ) -> -. E. t e. NN ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) ) | 
						
							| 140 | 39 139 | mpd |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> -. E. t e. NN ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) | 
						
							| 141 |  | ralnex |  |-  ( A. t e. NN -. ( ( S ` A ) < t /\ 0 < ( A ` t ) ) <-> -. E. t e. NN ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) | 
						
							| 142 | 140 141 | sylibr |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. t e. NN -. ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) | 
						
							| 143 |  | imnan |  |-  ( ( ( S ` A ) < t -> -. 0 < ( A ` t ) ) <-> -. ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) | 
						
							| 144 | 143 | ralbii |  |-  ( A. t e. NN ( ( S ` A ) < t -> -. 0 < ( A ` t ) ) <-> A. t e. NN -. ( ( S ` A ) < t /\ 0 < ( A ` t ) ) ) | 
						
							| 145 | 142 144 | sylibr |  |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. t e. NN ( ( S ` A ) < t -> -. 0 < ( A ` t ) ) ) | 
						
							| 146 | 145 | r19.21bi |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. NN ) -> ( ( S ` A ) < t -> -. 0 < ( A ` t ) ) ) | 
						
							| 147 | 146 | imp |  |-  ( ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. NN ) /\ ( S ` A ) < t ) -> -. 0 < ( A ` t ) ) | 
						
							| 148 | 17 12 33 147 | syl21anc |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> -. 0 < ( A ` t ) ) | 
						
							| 149 |  | nn0re |  |-  ( ( A ` t ) e. NN0 -> ( A ` t ) e. RR ) | 
						
							| 150 |  | 0red |  |-  ( ( A ` t ) e. NN0 -> 0 e. RR ) | 
						
							| 151 | 149 150 | lenltd |  |-  ( ( A ` t ) e. NN0 -> ( ( A ` t ) <_ 0 <-> -. 0 < ( A ` t ) ) ) | 
						
							| 152 |  | nn0le0eq0 |  |-  ( ( A ` t ) e. NN0 -> ( ( A ` t ) <_ 0 <-> ( A ` t ) = 0 ) ) | 
						
							| 153 | 151 152 | bitr3d |  |-  ( ( A ` t ) e. NN0 -> ( -. 0 < ( A ` t ) <-> ( A ` t ) = 0 ) ) | 
						
							| 154 | 153 | biimpa |  |-  ( ( ( A ` t ) e. NN0 /\ -. 0 < ( A ` t ) ) -> ( A ` t ) = 0 ) | 
						
							| 155 | 16 148 154 | syl2anc |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( A ` t ) = 0 ) | 
						
							| 156 | 8 155 | sylbir |  |-  ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) -> ( A ` t ) = 0 ) |