Step |
Hyp |
Ref |
Expression |
1 |
|
sumss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
sumss.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
3 |
|
sumss.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
4 |
|
sumss.4 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
7 |
1 4
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
10 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 |
12 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
14 |
11 12 13
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
15 |
10 14
|
nfeq |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) ) |
17 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
19 |
17 18
|
ifbieq1d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
21 |
|
eqid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
22 |
21
|
fvmpt2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
23 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
24 |
23
|
fveq2d |
⊢ ( 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( I ‘ 𝐶 ) ) |
25 |
22 24
|
sylan9eq |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
26 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) |
27 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
28 |
27
|
fvmpt2i |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
29 |
26 28
|
eqtrd |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
31 |
25 30
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
32 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
33 |
32
|
fveq2d |
⊢ ( ¬ 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = ( I ‘ 0 ) ) |
34 |
|
0z |
⊢ 0 ∈ ℤ |
35 |
|
fvi |
⊢ ( 0 ∈ ℤ → ( I ‘ 0 ) = 0 ) |
36 |
34 35
|
ax-mp |
⊢ ( I ‘ 0 ) = 0 |
37 |
33 36
|
eqtrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) = 0 ) |
38 |
22 37
|
sylan9eq |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = 0 ) |
39 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
40 |
39
|
adantl |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
41 |
38 40
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
42 |
31 41
|
pm2.61dan |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
43 |
9 15 20 42
|
vtoclgaf |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
45 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
47 |
46
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
48 |
5 6 8 44 47
|
zsum |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
49 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
50 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
51 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ 𝐵 |
52 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) |
53 |
51 52 13
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
54 |
10 53
|
nfeq |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) |
55 |
50 54
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
56 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
58 |
56 57
|
ifbieq1d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
59 |
16 58
|
eqeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
60 |
59
|
imbi2d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) ↔ ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) ) |
61 |
25
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ⊆ 𝐵 ) |
63 |
62
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐵 ) |
64 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) ) |
65 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
66 |
65
|
fvmpt2i |
⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = ( I ‘ 𝐶 ) ) |
67 |
64 66
|
eqtrd |
⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
68 |
63 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
69 |
61 68
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
70 |
38
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = 0 ) |
71 |
67
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = ( I ‘ 𝐶 ) ) |
72 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) |
73 |
3
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( I ‘ 𝐶 ) = ( I ‘ 0 ) ) |
74 |
|
0cn |
⊢ 0 ∈ ℂ |
75 |
|
fvi |
⊢ ( 0 ∈ ℂ → ( I ‘ 0 ) = 0 ) |
76 |
74 75
|
ax-mp |
⊢ ( I ‘ 0 ) = 0 |
77 |
73 76
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( I ‘ 𝐶 ) = 0 ) |
78 |
72 77
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → ( I ‘ 𝐶 ) = 0 ) |
79 |
71 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
80 |
79
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
81 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
83 |
82
|
a1d |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
84 |
80 83
|
pm2.61dan |
⊢ ( 𝜑 → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) ) |
86 |
85
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) = 0 ) |
87 |
70 86
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
88 |
69 87
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) |
89 |
88
|
expcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) , 0 ) ) ) |
90 |
9 55 60 89
|
vtoclgaf |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) ) |
91 |
90
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
92 |
91
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 0 ) ) |
93 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
95 |
3 74
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
96 |
72 95
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
97 |
96
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
98 |
94 97
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
99 |
98
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
101 |
100
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
102 |
5 6 49 92 101
|
zsum |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
103 |
48 102
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
104 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐶 |
105 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐵 𝐶 |
106 |
103 104 105
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
107 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
108 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
109 |
108
|
fdmi |
⊢ dom ℤ≥ = ℤ |
110 |
109
|
eleq2i |
⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
111 |
|
ndmfv |
⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
112 |
110 111
|
sylnbir |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
113 |
112
|
sseq2d |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ 𝐵 ⊆ ∅ ) ) |
114 |
4 113
|
syl5ib |
⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝜑 → 𝐵 ⊆ ∅ ) ) |
115 |
114
|
impcom |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ∅ ) |
116 |
107 115
|
sstrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
117 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
118 |
116 117
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = ∅ ) |
119 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
120 |
115 119
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 = ∅ ) |
121 |
118 120
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = 𝐵 ) |
122 |
121
|
sumeq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
123 |
106 122
|
pm2.61dan |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |