Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006) (Revised by Mario Carneiro, 10-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclgaf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
vtoclgaf.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
vtoclgaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtoclgaf.4 |
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) |
|
Assertion |
vtoclgaf |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclgaf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
vtoclgaf.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
vtoclgaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
vtoclgaf.4 |
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) |
5 |
1
|
nfel1 |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
6 |
5 2
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
8 |
7 3
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
9 |
1 6 8 4
|
vtoclgf |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
10 |
9
|
pm2.43i |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |