Metamath Proof Explorer


Theorem sumss

Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses sumss.1 φAB
sumss.2 φkAC
sumss.3 φkBAC=0
sumss.4 φBM
Assertion sumss φkAC=kBC

Proof

Step Hyp Ref Expression
1 sumss.1 φAB
2 sumss.2 φkAC
3 sumss.3 φkBAC=0
4 sumss.4 φBM
5 eqid M=M
6 simpr φMM
7 1 4 sstrd φAM
8 7 adantr φMAM
9 nfcv _km
10 nffvmpt1 _kkMifkAC0m
11 nfv kmA
12 nffvmpt1 _kkACm
13 nfcv _k0
14 11 12 13 nfif _kifmAkACm0
15 10 14 nfeq kkMifkAC0m=ifmAkACm0
16 fveq2 k=mkMifkAC0k=kMifkAC0m
17 eleq1w k=mkAmA
18 fveq2 k=mkACk=kACm
19 17 18 ifbieq1d k=mifkAkACk0=ifmAkACm0
20 16 19 eqeq12d k=mkMifkAC0k=ifkAkACk0kMifkAC0m=ifmAkACm0
21 eqid kMifkAC0=kMifkAC0
22 21 fvmpt2i kMkMifkAC0k=IifkAC0
23 iftrue kAifkAC0=C
24 23 fveq2d kAIifkAC0=IC
25 22 24 sylan9eq kMkAkMifkAC0k=IC
26 iftrue kAifkAkACk0=kACk
27 eqid kAC=kAC
28 27 fvmpt2i kAkACk=IC
29 26 28 eqtrd kAifkAkACk0=IC
30 29 adantl kMkAifkAkACk0=IC
31 25 30 eqtr4d kMkAkMifkAC0k=ifkAkACk0
32 iffalse ¬kAifkAC0=0
33 32 fveq2d ¬kAIifkAC0=I0
34 0z 0
35 fvi 0I0=0
36 34 35 ax-mp I0=0
37 33 36 eqtrdi ¬kAIifkAC0=0
38 22 37 sylan9eq kM¬kAkMifkAC0k=0
39 iffalse ¬kAifkAkACk0=0
40 39 adantl kM¬kAifkAkACk0=0
41 38 40 eqtr4d kM¬kAkMifkAC0k=ifkAkACk0
42 31 41 pm2.61dan kMkMifkAC0k=ifkAkACk0
43 9 15 20 42 vtoclgaf mMkMifkAC0m=ifmAkACm0
44 43 adantl φMmMkMifkAC0m=ifmAkACm0
45 2 fmpttd φkAC:A
46 45 adantr φMkAC:A
47 46 ffvelcdmda φMmAkACm
48 5 6 8 44 47 zsum φMmAkACm=seqM+kMifkAC0
49 4 adantr φMBM
50 nfv kφ
51 nfv kmB
52 nffvmpt1 _kkBCm
53 51 52 13 nfif _kifmBkBCm0
54 10 53 nfeq kkMifkAC0m=ifmBkBCm0
55 50 54 nfim kφkMifkAC0m=ifmBkBCm0
56 eleq1w k=mkBmB
57 fveq2 k=mkBCk=kBCm
58 56 57 ifbieq1d k=mifkBkBCk0=ifmBkBCm0
59 16 58 eqeq12d k=mkMifkAC0k=ifkBkBCk0kMifkAC0m=ifmBkBCm0
60 59 imbi2d k=mφkMifkAC0k=ifkBkBCk0φkMifkAC0m=ifmBkBCm0
61 25 adantll φkMkAkMifkAC0k=IC
62 1 adantr φkMAB
63 62 sselda φkMkAkB
64 iftrue kBifkBkBCk0=kBCk
65 eqid kBC=kBC
66 65 fvmpt2i kBkBCk=IC
67 64 66 eqtrd kBifkBkBCk0=IC
68 63 67 syl φkMkAifkBkBCk0=IC
69 61 68 eqtr4d φkMkAkMifkAC0k=ifkBkBCk0
70 38 adantll φkM¬kAkMifkAC0k=0
71 67 ad2antrl φkB¬kAifkBkBCk0=IC
72 eldif kBAkB¬kA
73 3 fveq2d φkBAIC=I0
74 0cn 0
75 fvi 0I0=0
76 74 75 ax-mp I0=0
77 73 76 eqtrdi φkBAIC=0
78 72 77 sylan2br φkB¬kAIC=0
79 71 78 eqtrd φkB¬kAifkBkBCk0=0
80 79 expr φkB¬kAifkBkBCk0=0
81 iffalse ¬kBifkBkBCk0=0
82 81 adantl φ¬kBifkBkBCk0=0
83 82 a1d φ¬kB¬kAifkBkBCk0=0
84 80 83 pm2.61dan φ¬kAifkBkBCk0=0
85 84 adantr φkM¬kAifkBkBCk0=0
86 85 imp φkM¬kAifkBkBCk0=0
87 70 86 eqtr4d φkM¬kAkMifkAC0k=ifkBkBCk0
88 69 87 pm2.61dan φkMkMifkAC0k=ifkBkBCk0
89 88 expcom kMφkMifkAC0k=ifkBkBCk0
90 9 55 60 89 vtoclgaf mMφkMifkAC0m=ifmBkBCm0
91 90 impcom φmMkMifkAC0m=ifmBkBCm0
92 91 adantlr φMmMkMifkAC0m=ifmBkBCm0
93 2 ex φkAC
94 93 adantr φkBkAC
95 3 74 eqeltrdi φkBAC
96 72 95 sylan2br φkB¬kAC
97 96 expr φkB¬kAC
98 94 97 pm2.61d φkBC
99 98 fmpttd φkBC:B
100 99 adantr φMkBC:B
101 100 ffvelcdmda φMmBkBCm
102 5 6 49 92 101 zsum φMmBkBCm=seqM+kMifkAC0
103 48 102 eqtr4d φMmAkACm=mBkBCm
104 sumfc mAkACm=kAC
105 sumfc mBkBCm=kBC
106 103 104 105 3eqtr3g φMkAC=kBC
107 1 adantr φ¬MAB
108 uzf :𝒫
109 108 fdmi dom=
110 109 eleq2i MdomM
111 ndmfv ¬MdomM=
112 110 111 sylnbir ¬MM=
113 112 sseq2d ¬MBMB
114 4 113 imbitrid ¬MφB
115 114 impcom φ¬MB
116 107 115 sstrd φ¬MA
117 ss0 AA=
118 116 117 syl φ¬MA=
119 ss0 BB=
120 115 119 syl φ¬MB=
121 118 120 eqtr4d φ¬MA=B
122 121 sumeq1d φ¬MkAC=kBC
123 106 122 pm2.61dan φkAC=kBC