| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpartlems.r | ⊢ 𝑅  =  { 𝑓  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | eulerpartlems.s | ⊢ 𝑆  =  ( 𝑓  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ↦  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  2  ∈  ℝ ) | 
						
							| 5 |  | bitsss | ⊢ ( bits ‘ ( 𝐴 ‘ 𝑡 ) )  ⊆  ℕ0 | 
						
							| 6 |  | simprr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 7 | 5 6 | sselid | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 8 | 4 7 | reexpcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 2 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  𝑡  ∈  ℕ ) | 
						
							| 10 | 9 | nnred | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 11 | 8 10 | remulcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( ( 2 ↑ 𝑛 )  ·  𝑡 )  ∈  ℝ ) | 
						
							| 12 | 1 2 | eulerpartlemelr | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantrr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 16 | 15 | nn0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 17 | 16 10 | remulcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ∈  ℝ ) | 
						
							| 18 | 1 2 | eulerpartlemsf | ⊢ 𝑆 : ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 ) ⟶ ℕ0 | 
						
							| 19 | 18 | ffvelcdmi | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 22 | 14 | nn0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 23 | 22 | adantrr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 24 | 9 | nnrpd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  𝑡  ∈  ℝ+ ) | 
						
							| 25 | 24 | rprege0d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 𝑡  ∈  ℝ  ∧  0  ≤  𝑡 ) ) | 
						
							| 26 |  | bitsfi | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  ( bits ‘ ( 𝐴 ‘ 𝑡 ) )  ∈  Fin ) | 
						
							| 27 | 15 26 | syl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( bits ‘ ( 𝐴 ‘ 𝑡 ) )  ∈  Fin ) | 
						
							| 28 | 3 | a1i | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) )  →  2  ∈  ℝ ) | 
						
							| 29 | 5 | a1i | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( bits ‘ ( 𝐴 ‘ 𝑡 ) )  ⊆  ℕ0 ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 31 | 28 30 | reexpcld | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) )  →  ( 2 ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 32 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 33 | 32 | a1i | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) )  →  0  ≤  2 ) | 
						
							| 34 | 28 30 33 | expge0d | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  ∧  𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) )  →  0  ≤  ( 2 ↑ 𝑖 ) ) | 
						
							| 35 | 6 | snssd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  { 𝑛 }  ⊆  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) | 
						
							| 36 | 27 31 34 35 | fsumless | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  Σ 𝑖  ∈  { 𝑛 } ( 2 ↑ 𝑖 )  ≤  Σ 𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 ) ) | 
						
							| 37 | 8 | recnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 2 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 2 ↑ 𝑖 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 39 | 38 | sumsn | ⊢ ( ( 𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) )  ∧  ( 2 ↑ 𝑛 )  ∈  ℂ )  →  Σ 𝑖  ∈  { 𝑛 } ( 2 ↑ 𝑖 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 40 | 6 37 39 | syl2anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  Σ 𝑖  ∈  { 𝑛 } ( 2 ↑ 𝑖 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 41 |  | bitsinv1 | ⊢ ( ( 𝐴 ‘ 𝑡 )  ∈  ℕ0  →  Σ 𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 42 | 15 41 | syl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  Σ 𝑖  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 43 | 36 40 42 | 3brtr3d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( 2 ↑ 𝑛 )  ≤  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 44 |  | lemul1a | ⊢ ( ( ( ( 2 ↑ 𝑛 )  ∈  ℝ  ∧  ( 𝐴 ‘ 𝑡 )  ∈  ℝ  ∧  ( 𝑡  ∈  ℝ  ∧  0  ≤  𝑡 ) )  ∧  ( 2 ↑ 𝑛 )  ≤  ( 𝐴 ‘ 𝑡 ) )  →  ( ( 2 ↑ 𝑛 )  ·  𝑡 )  ≤  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 45 | 8 23 25 43 44 | syl31anc | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( ( 2 ↑ 𝑛 )  ·  𝑡 )  ≤  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 46 |  | fzfid | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 47 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 48 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 49 | 13 47 48 | syl2an | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | nn0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 51 | 47 | adantl | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 52 | 51 | nnred | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 53 | 50 52 | remulcld | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  ∈  ℝ ) | 
						
							| 54 | 53 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  ∈  ℝ ) | 
						
							| 55 | 49 | nn0ge0d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  ≤  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 56 |  | 0red | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  ∈  ℝ ) | 
						
							| 57 | 51 | nngt0d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  <  𝑘 ) | 
						
							| 58 | 56 52 57 | ltled | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  ≤  𝑘 ) | 
						
							| 59 | 50 52 55 58 | mulge0d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  ≤  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 60 | 59 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  0  ≤  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑘  =  𝑡  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 62 |  | id | ⊢ ( 𝑘  =  𝑡  →  𝑘  =  𝑡 ) | 
						
							| 63 | 61 62 | oveq12d | ⊢ ( 𝑘  =  𝑡  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 65 | 46 54 60 63 64 | fsumge1 | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  ∧  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 67 |  | eldif | ⊢ ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  ( 𝑡  ∈  ℕ  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 68 |  | nndiffz1 | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈  ℕ0  →  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  =  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 69 | 68 | eleq2d | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈  ℕ0  →  ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 70 | 19 69 | syl | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  ↔  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 71 | 70 | pm5.32i | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  ↔  ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) ) ) | 
						
							| 72 | 1 2 | eulerpartlems | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 73 | 71 72 | sylbi | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 𝐴 ‘ 𝑡 )  =  0 ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  ( 0  ·  𝑡 ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 76 | 75 | eldifad | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑡  ∈  ℕ ) | 
						
							| 77 | 76 | nncnd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  𝑡  ∈  ℂ ) | 
						
							| 78 | 77 | mul02d | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( 0  ·  𝑡 )  =  0 ) | 
						
							| 79 | 74 78 | eqtrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  =  0 ) | 
						
							| 80 |  | fzfid | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 1 ... ( 𝑆 ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 81 | 80 53 59 | fsumge0 | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  0  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  0  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 83 | 79 82 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ( ℕ  ∖  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 84 | 67 83 | sylan2br | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 85 | 84 | anassrs | ⊢ ( ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  ∧  ¬  𝑡  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 86 | 66 85 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 87 | 1 2 | eulerpartlemsv3 | ⊢ ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 89 | 86 88 | breqtrrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 90 | 89 | adantrr | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( ( 𝐴 ‘ 𝑡 )  ·  𝑡 )  ≤  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 91 | 11 17 21 45 90 | letrd | ⊢ ( ( 𝐴  ∈  ( ( ℕ0  ↑m  ℕ )  ∩  𝑅 )  ∧  ( 𝑡  ∈  ℕ  ∧  𝑛  ∈  ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) )  →  ( ( 2 ↑ 𝑛 )  ·  𝑡 )  ≤  ( 𝑆 ‘ 𝐴 ) ) |