Metamath Proof Explorer


Theorem eulerpartlemo

Description: Lemma for eulerpart : O is the set of odd partitions of N . (Contributed by Thierry Arnoux, 10-Aug-2017)

Ref Expression
Hypotheses eulerpart.p
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) }
eulerpart.o
|- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n }
eulerpart.d
|- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 }
Assertion eulerpartlemo
|- ( A e. O <-> ( A e. P /\ A. n e. ( `' A " NN ) -. 2 || n ) )

Proof

Step Hyp Ref Expression
1 eulerpart.p
 |-  P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) }
2 eulerpart.o
 |-  O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n }
3 eulerpart.d
 |-  D = { g e. P | A. n e. NN ( g ` n ) <_ 1 }
4 cnveq
 |-  ( g = A -> `' g = `' A )
5 4 imaeq1d
 |-  ( g = A -> ( `' g " NN ) = ( `' A " NN ) )
6 5 raleqdv
 |-  ( g = A -> ( A. n e. ( `' g " NN ) -. 2 || n <-> A. n e. ( `' A " NN ) -. 2 || n ) )
7 6 2 elrab2
 |-  ( A e. O <-> ( A e. P /\ A. n e. ( `' A " NN ) -. 2 || n ) )