Description: Lemma for eulerpart : O is the set of odd partitions of N . (Contributed by Thierry Arnoux, 10-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eulerpart.p | ⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } | |
| eulerpart.o | ⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } | ||
| eulerpart.d | ⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } | ||
| Assertion | eulerpartlemo | ⊢ ( 𝐴 ∈ 𝑂 ↔ ( 𝐴 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eulerpart.p | ⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } | |
| 2 | eulerpart.o | ⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } | |
| 3 | eulerpart.d | ⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } | |
| 4 | cnveq | ⊢ ( 𝑔 = 𝐴 → ◡ 𝑔 = ◡ 𝐴 ) | |
| 5 | 4 | imaeq1d | ⊢ ( 𝑔 = 𝐴 → ( ◡ 𝑔 “ ℕ ) = ( ◡ 𝐴 “ ℕ ) ) | 
| 6 | 5 | raleqdv | ⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ∀ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) | 
| 7 | 6 2 | elrab2 | ⊢ ( 𝐴 ∈ 𝑂 ↔ ( 𝐴 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |