Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
fveq1 |
⊢ ( 𝑔 = 𝐴 → ( 𝑔 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑛 ) ) |
5 |
4
|
breq1d |
⊢ ( 𝑔 = 𝐴 → ( ( 𝑔 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
7 |
6 3
|
elrab2 |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
|
fzoval |
⊢ ( 2 ∈ ℤ → ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) |
11 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
12 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
13 |
12
|
oveq2i |
⊢ ( 0 ... ( 2 − 1 ) ) = ( 0 ... 1 ) |
14 |
10 11 13
|
3eqtr3i |
⊢ { 0 , 1 } = ( 0 ... 1 ) |
15 |
14
|
eleq2i |
⊢ ( ( 𝐴 ‘ 𝑛 ) ∈ { 0 , 1 } ↔ ( 𝐴 ‘ 𝑛 ) ∈ ( 0 ... 1 ) ) |
16 |
1
|
eulerpartleme |
⊢ ( 𝐴 ∈ 𝑃 ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
17 |
16
|
simp1bi |
⊢ ( 𝐴 ∈ 𝑃 → 𝐴 : ℕ ⟶ ℕ0 ) |
18 |
17
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ) |
19 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
20 |
|
elfz2nn0 |
⊢ ( ( 𝐴 ‘ 𝑛 ) ∈ ( 0 ... 1 ) ↔ ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
21 |
|
df-3an |
⊢ ( ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ↔ ( ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
22 |
20 21
|
bitri |
⊢ ( ( 𝐴 ‘ 𝑛 ) ∈ ( 0 ... 1 ) ↔ ( ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
23 |
22
|
baib |
⊢ ( ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) ∈ ( 0 ... 1 ) ↔ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
24 |
18 19 23
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ∈ ( 0 ... 1 ) ↔ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ) |
25 |
15 24
|
bitr2id |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐴 ‘ 𝑛 ) ∈ { 0 , 1 } ) ) |
26 |
25
|
ralbidva |
⊢ ( 𝐴 ∈ 𝑃 → ( ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ≤ 1 ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ { 0 , 1 } ) ) |
27 |
17
|
ffund |
⊢ ( 𝐴 ∈ 𝑃 → Fun 𝐴 ) |
28 |
|
fdm |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → dom 𝐴 = ℕ ) |
29 |
|
eqimss2 |
⊢ ( dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴 ) |
30 |
17 28 29
|
3syl |
⊢ ( 𝐴 ∈ 𝑃 → ℕ ⊆ dom 𝐴 ) |
31 |
|
funimass4 |
⊢ ( ( Fun 𝐴 ∧ ℕ ⊆ dom 𝐴 ) → ( ( 𝐴 “ ℕ ) ⊆ { 0 , 1 } ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ { 0 , 1 } ) ) |
32 |
27 30 31
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑃 → ( ( 𝐴 “ ℕ ) ⊆ { 0 , 1 } ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ∈ { 0 , 1 } ) ) |
33 |
26 32
|
bitr4d |
⊢ ( 𝐴 ∈ 𝑃 → ( ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐴 “ ℕ ) ⊆ { 0 , 1 } ) ) |
34 |
33
|
pm5.32i |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ≤ 1 ) ↔ ( 𝐴 ∈ 𝑃 ∧ ( 𝐴 “ ℕ ) ⊆ { 0 , 1 } ) ) |
35 |
7 34
|
bitri |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ 𝑃 ∧ ( 𝐴 “ ℕ ) ⊆ { 0 , 1 } ) ) |